找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Algebraic Geometry 2; Schemes and Complex Igor R. Shafarevich Textbook 2013Latest edition Springer-Verlag Berlin Heidelberg 2013 alg

[復制鏈接]
樓主: BOUT
21#
發(fā)表于 2025-3-25 05:06:16 | 只看該作者
Textbook 2013Latest editionmensional varieties that has been widely studied as the ``Shafarevich conjecture‘‘..The style of? Basic Algebraic Geometry 2 and its minimal prerequisites make it to a large extent independent of? Basic Algebraic Geometry 1, and accessible to beginning graduate students in mathematics and in theoret
22#
發(fā)表于 2025-3-25 10:40:13 | 只看該作者
23#
發(fā)表于 2025-3-25 12:24:45 | 只看該作者
Uniformisation every finite group as the fundamental group of a compact complex manifold. The final section raises the question (now considered to be a deep and studied under the name of Shafarevich’s conjecture) of whether the universal cover of a complete algebraic variety is holomorphically convex.
24#
發(fā)表于 2025-3-25 17:36:49 | 只看該作者
Schemesion. The prime spectrum Spec. of an arbitrary commutative ring with a?1 is defined as the set of prime ideals of .. It has a Zariski topology and a structure sheaf, a sheaf of rings with stalk at a point . the local ring .. Several examples are discussed, along with foundation notions, such as the d
25#
發(fā)表于 2025-3-25 23:55:32 | 只看該作者
Varietiesrn. A variety over an algebraically closed field . is a separated reduced scheme of finite type over .. The general properties of quasiprojective varieties from Volume?1 of the book are reinterpreted in this intrinsic framework..There follows a comparison between varieties and projective varieties,
26#
發(fā)表于 2025-3-26 03:57:26 | 只看該作者
27#
發(fā)表于 2025-3-26 07:56:12 | 只看該作者
28#
發(fā)表于 2025-3-26 11:16:42 | 只看該作者
Uniformisationory is classical: a curve of genus?0 is isomorphic to ., by the Riemann mapping theorem, curves of genus?1 are uniformised by . with the fundamental group a lattice of translations, and curves of genus?≥2 by the upper half-plane, with the covering group a cocompact discrete subgroup of .. Conversely
29#
發(fā)表于 2025-3-26 15:05:55 | 只看該作者
9樓
30#
發(fā)表于 2025-3-26 19:55:34 | 只看該作者
9樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
定兴县| 缙云县| 大城县| 永清县| 民丰县| 包头市| 安泽县| 千阳县| 定兴县| 保山市| 金昌市| 公主岭市| 淅川县| 威远县| 建湖县| 中宁县| 揭东县| 繁昌县| 临潭县| 福州市| 左贡县| 乌恰县| 崇义县| 临江市| 华宁县| 八宿县| 哈巴河县| 钟祥市| 桃园市| 隆回县| 青海省| 龙江县| 武汉市| 文水县| 奉化市| 永福县| 陵水| 金平| 成安县| 晋江市| 西充县|