找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Algebraic Geometry 2; Schemes and Complex Igor R. Shafarevich Textbook 2013Latest edition Springer-Verlag Berlin Heidelberg 2013 alg

[復制鏈接]
樓主: BOUT
21#
發(fā)表于 2025-3-25 05:06:16 | 只看該作者
Textbook 2013Latest editionmensional varieties that has been widely studied as the ``Shafarevich conjecture‘‘..The style of? Basic Algebraic Geometry 2 and its minimal prerequisites make it to a large extent independent of? Basic Algebraic Geometry 1, and accessible to beginning graduate students in mathematics and in theoret
22#
發(fā)表于 2025-3-25 10:40:13 | 只看該作者
23#
發(fā)表于 2025-3-25 12:24:45 | 只看該作者
Uniformisation every finite group as the fundamental group of a compact complex manifold. The final section raises the question (now considered to be a deep and studied under the name of Shafarevich’s conjecture) of whether the universal cover of a complete algebraic variety is holomorphically convex.
24#
發(fā)表于 2025-3-25 17:36:49 | 只看該作者
Schemesion. The prime spectrum Spec. of an arbitrary commutative ring with a?1 is defined as the set of prime ideals of .. It has a Zariski topology and a structure sheaf, a sheaf of rings with stalk at a point . the local ring .. Several examples are discussed, along with foundation notions, such as the d
25#
發(fā)表于 2025-3-25 23:55:32 | 只看該作者
Varietiesrn. A variety over an algebraically closed field . is a separated reduced scheme of finite type over .. The general properties of quasiprojective varieties from Volume?1 of the book are reinterpreted in this intrinsic framework..There follows a comparison between varieties and projective varieties,
26#
發(fā)表于 2025-3-26 03:57:26 | 只看該作者
27#
發(fā)表于 2025-3-26 07:56:12 | 只看該作者
28#
發(fā)表于 2025-3-26 11:16:42 | 只看該作者
Uniformisationory is classical: a curve of genus?0 is isomorphic to ., by the Riemann mapping theorem, curves of genus?1 are uniformised by . with the fundamental group a lattice of translations, and curves of genus?≥2 by the upper half-plane, with the covering group a cocompact discrete subgroup of .. Conversely
29#
發(fā)表于 2025-3-26 15:05:55 | 只看該作者
9樓
30#
發(fā)表于 2025-3-26 19:55:34 | 只看該作者
9樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
晴隆县| 云浮市| 称多县| 濉溪县| 岳普湖县| 灵台县| 衡东县| 毕节市| 左权县| 新密市| 平和县| 宁晋县| 韶山市| 徐闻县| 高要市| 通化县| 襄汾县| 怀仁县| 读书| 吐鲁番市| 岳阳县| 巴彦县| 大同市| 墨脱县| 鄄城县| 大关县| 扶余县| 东乌| 丹江口市| 丰台区| 威远县| 夏津县| 库车县| 衡山县| 平塘县| 岳普湖县| 阿合奇县| 搜索| 灵寿县| 台北县| 本溪市|