找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Algebraic Geometry 2; Schemes and Complex Igor R. Shafarevich Textbook 19942nd edition Springer-Verlag Berlin Heidelberg 1994 Algebr

[復(fù)制鏈接]
樓主: 傳家寶
11#
發(fā)表于 2025-3-23 11:35:09 | 只看該作者
Montaignes Begriff Der Gesundheit,d invariant point of view. On the one hand, this leads to new ideas and methods that turn out to be exceptionally fertile even for the study of the quasiprojective varieties we have worked with up to now. On the other, we arrive in this way at a generalisation of this notion that vastly extends the
12#
發(fā)表于 2025-3-23 17:16:20 | 只看該作者
Pet?r Beron und Seine Fischfibeln Chap. II, 2.3, this was proved for quasiprojective varieties, at the time the only varieties known to us. But the same arguments are valid also for arbitrary varieties. We give here a general definition; the topology of . that comes from its structure of a scheme is called its ..
13#
發(fā)表于 2025-3-23 21:24:38 | 只看該作者
14#
發(fā)表于 2025-3-23 23:25:29 | 只看該作者
15#
發(fā)表于 2025-3-24 04:50:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:26:22 | 只看該作者
Pet?r Beron und Seine Fischfibeln Chap. II, 2.3, this was proved for quasiprojective varieties, at the time the only varieties known to us. But the same arguments are valid also for arbitrary varieties. We give here a general definition; the topology of . that comes from its structure of a scheme is called its ..
17#
發(fā)表于 2025-3-24 10:55:09 | 只看該作者
18#
發(fā)表于 2025-3-24 17:36:47 | 只看該作者
19#
發(fā)表于 2025-3-24 21:58:58 | 只看該作者
Universit?ts-Gesellschaft HeidelbergIn previous sections of this book we have used the notion of quotient space to construct many important examples of complex manifolds. We now show that the notion leads to a general method of studying complex manifolds.
20#
發(fā)表于 2025-3-25 01:01:50 | 只看該作者
VarietiesIn this chapter we consider the schemes most closely related to projective varieties; they will be called algebraic varieties. This is exactly what we arrive at on attempting to give an intrinsic definition of algebraic variety.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南丰县| 西乌珠穆沁旗| 石渠县| 天等县| 广南县| 来凤县| 安溪县| 临沭县| 油尖旺区| 凤山县| 北碚区| 腾冲县| 滨海县| 启东市| 通榆县| 中牟县| 郁南县| 盈江县| 巍山| 邹平县| 曲松县| 南皮县| 巧家县| 平陆县| 邛崃市| 沂水县| 紫云| 岳西县| 三穗县| 金乡县| 靖宇县| 得荣县| 石渠县| 客服| 昌图县| 德安县| 莱阳市| 灌云县| 迁安市| 渭南市| 永仁县|