找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Algebraic Geometry; Igor R. Shafarevich Book 19741st edition Springer-Verlag Berlin Heidelberg 1974 Algebraic.Basic.Manifold.algebra

[復(fù)制鏈接]
樓主: 珍愛(ài)
21#
發(fā)表于 2025-3-25 06:27:40 | 只看該作者
Heidelberger Gelehrtenlexikon 1386–1651mplex numbers ?. The example of smooth projective curves shows to what extent this space characterizes the variety .. We have shown that in this case the only invariant of .(?) is the genus of .. We can say, therefore, that the genus is the only topological invariant of a projective curve. Undoubted
22#
發(fā)表于 2025-3-25 08:26:58 | 只看該作者
https://doi.org/10.1007/978-3-642-96200-4Algebraic; Basic; Manifold; algebra; function; geometry; mathematics
23#
發(fā)表于 2025-3-25 11:53:23 | 只看該作者
978-3-540-08264-4Springer-Verlag Berlin Heidelberg 1974
24#
發(fā)表于 2025-3-25 17:30:21 | 只看該作者
https://doi.org/10.1007/978-3-663-01112-5The first chapter is concerned with a number of fundamental concepts of algebraic geometry. In the first section we analyse some examples, which prepare us for the introduction of these concepts.
25#
發(fā)表于 2025-3-25 21:04:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:26:02 | 只看該作者
Alphabetisches Verzeichnis der Professoren,In this chapter we consider schemes that are more closely connected with quasiprojective varieties. These schemes are called algebraic varieties. It is precisely this concept that we arrive at in trying to give an invariant definition of an algebraic variety.
27#
發(fā)表于 2025-3-26 05:47:10 | 只看該作者
28#
發(fā)表于 2025-3-26 08:36:56 | 只看該作者
29#
發(fā)表于 2025-3-26 15:11:07 | 只看該作者
30#
發(fā)表于 2025-3-26 16:53:51 | 只看該作者
VarietiesIn this chapter we consider schemes that are more closely connected with quasiprojective varieties. These schemes are called algebraic varieties. It is precisely this concept that we arrive at in trying to give an invariant definition of an algebraic variety.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳信县| 铅山县| 宝坻区| 南充市| 孟连| 安丘市| 湛江市| 湘阴县| 平乐县| 富顺县| 筠连县| 琼海市| 浦城县| 巴林右旗| 永济市| 观塘区| 南丹县| 星座| 巴青县| 高青县| 时尚| 沂水县| 涞源县| 禄丰县| 宝清县| 苍山县| 遂溪县| 双流县| 扶沟县| 普安县| 本溪市| 黑龙江省| 新野县| 三明市| 长海县| 眉山市| 搜索| 海伦市| 海宁市| 漳平市| 正镶白旗|