找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Algebraic Geometry; Igor R. Shafarevich Book 19741st edition Springer-Verlag Berlin Heidelberg 1974 Algebraic.Basic.Manifold.algebra

[復制鏈接]
樓主: 珍愛
21#
發(fā)表于 2025-3-25 06:27:40 | 只看該作者
Heidelberger Gelehrtenlexikon 1386–1651mplex numbers ?. The example of smooth projective curves shows to what extent this space characterizes the variety .. We have shown that in this case the only invariant of .(?) is the genus of .. We can say, therefore, that the genus is the only topological invariant of a projective curve. Undoubted
22#
發(fā)表于 2025-3-25 08:26:58 | 只看該作者
https://doi.org/10.1007/978-3-642-96200-4Algebraic; Basic; Manifold; algebra; function; geometry; mathematics
23#
發(fā)表于 2025-3-25 11:53:23 | 只看該作者
978-3-540-08264-4Springer-Verlag Berlin Heidelberg 1974
24#
發(fā)表于 2025-3-25 17:30:21 | 只看該作者
https://doi.org/10.1007/978-3-663-01112-5The first chapter is concerned with a number of fundamental concepts of algebraic geometry. In the first section we analyse some examples, which prepare us for the introduction of these concepts.
25#
發(fā)表于 2025-3-25 21:04:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:26:02 | 只看該作者
Alphabetisches Verzeichnis der Professoren,In this chapter we consider schemes that are more closely connected with quasiprojective varieties. These schemes are called algebraic varieties. It is precisely this concept that we arrive at in trying to give an invariant definition of an algebraic variety.
27#
發(fā)表于 2025-3-26 05:47:10 | 只看該作者
28#
發(fā)表于 2025-3-26 08:36:56 | 只看該作者
29#
發(fā)表于 2025-3-26 15:11:07 | 只看該作者
30#
發(fā)表于 2025-3-26 16:53:51 | 只看該作者
VarietiesIn this chapter we consider schemes that are more closely connected with quasiprojective varieties. These schemes are called algebraic varieties. It is precisely this concept that we arrive at in trying to give an invariant definition of an algebraic variety.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
遂昌县| 泗洪县| 布尔津县| 东台市| 安义县| 扎鲁特旗| 永丰县| 尚志市| 新竹县| 石城县| 湾仔区| 芦溪县| 昭苏县| 多伦县| 永城市| 甘德县| 扶沟县| 洛隆县| 长岛县| 富宁县| 湖口县| 东乌珠穆沁旗| 沁源县| 乐清市| 天镇县| 将乐县| 莒南县| 长寿区| 改则县| 南乐县| 阳朔县| 玛曲县| 拜城县| 宝山区| 庄河市| 奇台县| 德昌县| 阿图什市| 兴和县| 巴彦淖尔市| 淮南市|