找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Algebra; Groups, Rings and Fi P. M. Cohn Textbook 2003 Springer-Verlag London Ltd., part of Springer Nature 2003 Algebra.Basic algebr

[復(fù)制鏈接]
樓主: 延展
11#
發(fā)表于 2025-3-23 11:48:17 | 只看該作者
12#
發(fā)表于 2025-3-23 14:48:57 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:14 | 只看該作者
14#
發(fā)表于 2025-3-23 22:31:07 | 只看該作者
Sets,e form of Zorn’s lemma. These topi cs occupy Sections 1.1 and 1.2. They are followed in Section 1.3 by an introduction to graph theory. This is an extensive theory with many applications in algebra and elsewhere; all we shall do here is to present a few basic results, some of which will be used later, which convey the flavour of the topic.
15#
發(fā)表于 2025-3-24 04:11:21 | 只看該作者
16#
發(fā)表于 2025-3-24 08:55:17 | 只看該作者
17#
發(fā)表于 2025-3-24 10:56:01 | 只看該作者
http://image.papertrans.cn/b/image/180947.jpg
18#
發(fā)表于 2025-3-24 16:23:29 | 只看該作者
19#
發(fā)表于 2025-3-24 21:00:25 | 只看該作者
Heidelberg Congress on Taxing Consumptionis chapter deals with some notions of importance in elucidating the structure of groups, such as solubility, nilpotence (Section 2.4) and commutator subgroups (Section 2.5). In Section 2.6 we describe the constructions of Frattini and Fitting, which have their counterpart in rings in the form of the radical.
20#
發(fā)表于 2025-3-25 02:40:25 | 只看該作者
Sets,e form of Zorn’s lemma. These topi cs occupy Sections 1.1 and 1.2. They are followed in Section 1.3 by an introduction to graph theory. This is an extensive theory with many applications in algebra and elsewhere; all we shall do here is to present a few basic results, some of which will be used late
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
余江县| 常熟市| 徐水县| 九龙坡区| 永年县| 赤水市| 株洲县| 砀山县| 广南县| 呼和浩特市| 靖宇县| 剑阁县| 中宁县| 娄烦县| 泰安市| 台中市| 义马市| 西宁市| 灵丘县| 凤台县| 佛山市| 西昌市| 和政县| 家居| 平陆县| 星子县| 清新县| 泸州市| 三江| 元江| 山丹县| 平谷区| 乌鲁木齐县| 香港 | 马龙县| 潮安县| 海阳市| 洛宁县| 合江县| 阜南县| 二连浩特市|