找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bangabandhu and Digital Bangladesh; First International A. K. M. Muzahidul Islam,Jia Uddin,Shah Murtaza Ra Conference proceedings 2022 The

[復(fù)制鏈接]
樓主: Filament
21#
發(fā)表于 2025-3-25 05:13:01 | 只看該作者
22#
發(fā)表于 2025-3-25 10:08:26 | 只看該作者
,New Model to?Store and?Manage Private Healthcare Records Securely Using Block Chain Technologies,ive techniques in managing the health care data. With the use of new techniques, we can bring more transparency and security in the health care records management which will be much useful to the patients and to the doctors. To overcome this problem, we developed new model using block chain technology
23#
發(fā)表于 2025-3-25 13:29:31 | 只看該作者
24#
發(fā)表于 2025-3-25 17:42:30 | 只看該作者
25#
發(fā)表于 2025-3-25 23:28:38 | 只看該作者
https://doi.org/10.1007/978-3-662-25600-8from different organisms. Experimental results show that the similarity-based methods collaboratively improve prediction performance, and are even comparable to high-performing embedding-based methods in some biological graphs. We compute the importance score of similarity-based features in order to explain the leading features in a graph.
26#
發(fā)表于 2025-3-26 02:01:42 | 只看該作者
27#
發(fā)表于 2025-3-26 08:06:53 | 只看該作者
A Feasible Approach to Predict Survival Rates Post Lung Surgery Utilizing Machine Learning Techniqued model, we have used three methods for focusing on features: Decision Tree, ANOVA and Recursive Feature Elimination. Three classification algorithms are Decision Tree, K-Nearest Neighbors, and Gaussian Na?ve Bayes. By using Recursive Feature Elimination run over Decision tree classifier, our proposed model has given 89.00% accuracy on it.
28#
發(fā)表于 2025-3-26 10:17:32 | 只看該作者
29#
發(fā)表于 2025-3-26 15:38:07 | 只看該作者
,From Competition to?Collaboration: Ensembling Similarity-Based Heuristics for?Supervised Link Predifrom different organisms. Experimental results show that the similarity-based methods collaboratively improve prediction performance, and are even comparable to high-performing embedding-based methods in some biological graphs. We compute the importance score of similarity-based features in order to explain the leading features in a graph.
30#
發(fā)表于 2025-3-26 17:39:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐海县| 南通市| 潞西市| 江北区| 会同县| 全州县| 新竹县| 布尔津县| 榕江县| 都昌县| 西畴县| 兴和县| 广饶县| 栾城县| 岢岚县| 十堰市| 广宁县| 独山县| 花垣县| 武功县| 资中县| 定安县| 冷水江市| 缙云县| 玉田县| 皮山县| 永州市| 长葛市| 双辽市| 黔南| 那坡县| 突泉县| 武鸣县| 香港 | 海丰县| 三门县| 潼南县| 黄骅市| 靖安县| 荔浦县| 苍溪县|