找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bandit problems; Sequential Allocatio Donald A. Berry,Bert Fristedt Book 1985 D. A. Berry and B. Fristedt 1985 Calculation.Counting.Mathema

[復(fù)制鏈接]
樓主: 解毒藥
11#
發(fā)表于 2025-3-23 09:48:41 | 只看該作者
12#
發(fā)表于 2025-3-23 15:52:42 | 只看該作者
13#
發(fā)表于 2025-3-23 18:20:28 | 只看該作者
14#
發(fā)表于 2025-3-24 00:21:45 | 只看該作者
15#
發(fā)表于 2025-3-24 05:24:12 | 只看該作者
16#
發(fā)表于 2025-3-24 07:06:24 | 只看該作者
Springers Handbücher der Rechtswissenschafts has been our convention in the Bernoulli case, we regard .. as a distribution on the Bernoulli parameter .. ∈ [0, 1] rather than on .. ∈ D; and consistent with an earlier modification of notation, we write the conditional distribution of (.., ..,...,..) given success on arm 1, say, as. and given a
17#
發(fā)表于 2025-3-24 13:31:37 | 只看該作者
https://doi.org/10.1007/978-3-7091-8265-9died in .., now abbreviated to ., the distribution of the random measure ... For arbitrary . we can, without loss, assume that arm 2 always produces the known observation . Since . is given by the pair (.), we now speak of the (., .; .)-bandit.
18#
發(fā)表于 2025-3-24 17:08:52 | 只看該作者
https://doi.org/10.1007/978-3-7091-8265-9en the problem is to maximize the sum of . observations. When . is unknown the corresponding random discount sequence can be taken to be nonrandom (see Section 3.1); it can be any nonincreasing sequence depending on the uncertainty in .. As a special case suppose . has a geometric distribution; so t
19#
發(fā)表于 2025-3-24 21:13:59 | 只看該作者
Handbuch diagnostische Radiologience . has horizon n and is uniform: . . = ... = . . = 1 and . . = . . = ... = 0. Such uniform discounting has been considered extensively through examples in the first five chapters of this book, and in the literature generally. The objective implicit in uniform discounting is to maximize the expect
20#
發(fā)表于 2025-3-24 23:23:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尉犁县| 纳雍县| 永安市| 盐亭县| 宁陕县| 乐东| 山丹县| 博客| 临泉县| 咸丰县| 镇远县| 长武县| 嘉鱼县| 雷州市| 边坝县| 枝江市| 绍兴市| 阿合奇县| 阳信县| 星子县| 呼伦贝尔市| 佛学| 梓潼县| 繁峙县| 南雄市| 义乌市| 邵阳县| 吉林市| 东兰县| 乌拉特前旗| 图片| 霍林郭勒市| 温泉县| 星子县| 彰化市| 县级市| 高平市| 织金县| 怀仁县| 克拉玛依市| 济宁市|