找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Spaces; Proceedings of the M Nigel J. Kalton,Elias Saab Conference proceedings 1985 Springer-Verlag Berlin Heidelberg 1985 Banach Sp

[復(fù)制鏈接]
樓主: adulation
11#
發(fā)表于 2025-3-23 11:11:02 | 只看該作者
https://doi.org/10.1007/BFb0074684Banach Space; banach spaces; compactness; convergence; iteration; minimum; operator
12#
發(fā)表于 2025-3-23 15:04:55 | 只看該作者
978-3-540-16051-9Springer-Verlag Berlin Heidelberg 1985
13#
發(fā)表于 2025-3-23 19:04:21 | 只看該作者
14#
發(fā)表于 2025-3-24 01:55:14 | 只看該作者
15#
發(fā)表于 2025-3-24 05:05:22 | 只看該作者
On the radon-nikodym property in function spaces,Using the topological methods introduced in [3], we give a simple proof of a theorem of Talagrand [7] which asserts that Banach lattices with the Radon-Nikodym property are isometric to dual Banach lattices. We also give a proof of a recent result announced by Diestel
16#
發(fā)表于 2025-3-24 08:22:48 | 只看該作者
Weak*-denting points in duals of operator spaces,We characterize the weak*-denting points in the dual unit balls of the spaces of compact, of weakly compact, and of all bounded linear operators between Banach spaces X and Y in terms of the denting points of the unit ball of X and the weak*-denting points of the dual unit ball of Y.
17#
發(fā)表于 2025-3-24 11:36:31 | 只看該作者
Gemeinden und Kreise im Raumgefüge and Tomczak. This brings us into contact with diverse concepts, such as: pseudo-convex sets, plurisubharmonic functions, conformal martingales, the Radon-Nikodym property, and the analytic Randon-Nikodym property.
18#
發(fā)表于 2025-3-24 16:24:58 | 只看該作者
Complex martingale convergence, and Tomczak. This brings us into contact with diverse concepts, such as: pseudo-convex sets, plurisubharmonic functions, conformal martingales, the Radon-Nikodym property, and the analytic Randon-Nikodym property.
19#
發(fā)表于 2025-3-24 20:35:07 | 只看該作者
20#
發(fā)表于 2025-3-24 23:55:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普安县| 鄱阳县| 许昌县| 柳河县| 湖州市| 广丰县| 高台县| 岳普湖县| 达州市| 关岭| 武宁县| 于田县| 海林市| 瑞安市| 京山县| 荆门市| 安阳县| 炎陵县| 平邑县| 祁东县| 巢湖市| 丰台区| 德化县| 中超| 县级市| 夹江县| 肇源县| 涞水县| 房山区| 兖州市| 衡东县| 台南市| 米泉市| 德州市| 道真| 静宁县| 繁峙县| 波密县| 彩票| 河南省| 贺兰县|