找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Space Theory and its Applications; Proceedings of the F Albrecht Pietsch,Nicolae Popa,Ivan Singer Conference proceedings 1983 Spring

[復(fù)制鏈接]
樓主: Ford
11#
發(fā)表于 2025-3-23 12:00:42 | 只看該作者
12#
發(fā)表于 2025-3-23 15:17:17 | 只看該作者
978-3-540-12298-2Springer-Verlag Berlin Heidelberg 1983
13#
發(fā)表于 2025-3-23 19:06:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:29:07 | 只看該作者
https://doi.org/10.1007/978-3-7091-3768-0 characterization of separable conjugate Banach spaces by a similar summability condition. As a consequence, we obtain analogous characterizations of separable second conjugate Banach spaces and of quasi-reflexive spaces. Nonseparable conjugate Banach spaces possessing a smooth predual are also char
15#
發(fā)表于 2025-3-24 03:49:36 | 只看該作者
Handbuch der kommunalen Sozialpolitik,yεE we always have dist (y,P.(x))≥‖x?y‖-dist(x,G), we study the subspaces G with the property — which we call property (*) — that this inequality is an equality for each xεE with P.(x)≠φ and each gεG. This property generalizes the notion of semi L-summand studied by A.Lima. For a subspace G with pr
16#
發(fā)表于 2025-3-24 08:19:05 | 只看該作者
17#
發(fā)表于 2025-3-24 11:54:10 | 只看該作者
On summability in conjugate Banach spaces, characterization of separable conjugate Banach spaces by a similar summability condition. As a consequence, we obtain analogous characterizations of separable second conjugate Banach spaces and of quasi-reflexive spaces. Nonseparable conjugate Banach spaces possessing a smooth predual are also char
18#
發(fā)表于 2025-3-24 18:00:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:18 | 只看該作者
,On Etcheberry’s extended Milutin lemma,onal numbers. Etcheberry proved this by constructing a continuous surjection π: I→X that admits an averaging operator. Here, we provide an alternative technique for the construction of averaging operators that are even regular and also allow one to prove the first mentioned result.
20#
發(fā)表于 2025-3-25 00:49:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥江县| 中宁县| 湖州市| 九江县| 台前县| 重庆市| 枞阳县| 宣武区| 蛟河市| 兰坪| 平罗县| 东阳市| 偏关县| 东丽区| 安宁市| 云梦县| 新泰市| 应用必备| 特克斯县| 上饶县| 游戏| 万盛区| 宁武县| 上饶县| 治县。| 旬阳县| 东乌珠穆沁旗| 敖汉旗| 青州市| 佛山市| 靖宇县| 桂平市| 嘉定区| 平远县| 长沙市| 泸溪县| 巴里| 上栗县| 衡阳县| 万年县| 平湖市|