找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Space Theory and its Applications; Proceedings of the F Albrecht Pietsch,Nicolae Popa,Ivan Singer Conference proceedings 1983 Spring

[復(fù)制鏈接]
樓主: Ford
11#
發(fā)表于 2025-3-23 12:00:42 | 只看該作者
12#
發(fā)表于 2025-3-23 15:17:17 | 只看該作者
978-3-540-12298-2Springer-Verlag Berlin Heidelberg 1983
13#
發(fā)表于 2025-3-23 19:06:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:29:07 | 只看該作者
https://doi.org/10.1007/978-3-7091-3768-0 characterization of separable conjugate Banach spaces by a similar summability condition. As a consequence, we obtain analogous characterizations of separable second conjugate Banach spaces and of quasi-reflexive spaces. Nonseparable conjugate Banach spaces possessing a smooth predual are also char
15#
發(fā)表于 2025-3-24 03:49:36 | 只看該作者
Handbuch der kommunalen Sozialpolitik,yεE we always have dist (y,P.(x))≥‖x?y‖-dist(x,G), we study the subspaces G with the property — which we call property (*) — that this inequality is an equality for each xεE with P.(x)≠φ and each gεG. This property generalizes the notion of semi L-summand studied by A.Lima. For a subspace G with pr
16#
發(fā)表于 2025-3-24 08:19:05 | 只看該作者
17#
發(fā)表于 2025-3-24 11:54:10 | 只看該作者
On summability in conjugate Banach spaces, characterization of separable conjugate Banach spaces by a similar summability condition. As a consequence, we obtain analogous characterizations of separable second conjugate Banach spaces and of quasi-reflexive spaces. Nonseparable conjugate Banach spaces possessing a smooth predual are also char
18#
發(fā)表于 2025-3-24 18:00:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:18 | 只看該作者
,On Etcheberry’s extended Milutin lemma,onal numbers. Etcheberry proved this by constructing a continuous surjection π: I→X that admits an averaging operator. Here, we provide an alternative technique for the construction of averaging operators that are even regular and also allow one to prove the first mentioned result.
20#
發(fā)表于 2025-3-25 00:49:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西丰县| 平阳县| 宁国市| 西贡区| 遵义市| 尚义县| 福贡县| 肃宁县| 治多县| 喜德县| 定安县| 江山市| 三河市| 从江县| 腾冲县| 稻城县| 崇阳县| 读书| 德江县| 沾化县| 孙吴县| 方山县| 临夏市| 进贤县| 南木林县| 安达市| 台州市| 汕头市| 安西县| 通化县| 桂林市| 兴化市| 隆回县| 柯坪县| 张家口市| 宁安市| 凌海市| 屏南县| 乌拉特后旗| 银川市| 卓尼县|