找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Algebras and Several Complex Variables; John Wermer Textbook 19762nd edition Springer Science+Business Media New York 1976 Banach.B

[復(fù)制鏈接]
樓主: lumbar-puncture
21#
發(fā)表于 2025-3-25 05:00:40 | 只看該作者
Wirtschaft als funktionales TeilsystemAs the two-dimensional analogue of an are in .., we take a disk in .. defined as follows. Let . be the closed unit disk in the ζ-plane and let ..,…, .. be continuous functions defined on .. Assume that the map ζ → (..(ζ),…, ..(ζ)) is one to one on .. The image . of . under this map we call a . in ...
22#
發(fā)表于 2025-3-25 08:53:37 | 只看該作者
https://doi.org/10.1007/978-3-531-90905-9Given Banach algebras ?. and ?. with maximal ideal spaces .. and .., if ?. and ?. are isomorphic as algebras, then .. and .. are homeomorphic. It is thus to be expected that the topology of . (?) is reflected in the algebraic structure of ?, for an arbitrary Banach algebra ?.
23#
發(fā)表于 2025-3-25 12:58:03 | 只看該作者
24#
發(fā)表于 2025-3-25 19:33:17 | 只看該作者
https://doi.org/10.1007/978-3-642-90965-8Let . be a compact set in .. which lies on a smooth .-dimensional (real) submanifold ∑ of ... Assume that . is polynomially convex. Under what conditions on ∑ can we conclude that .?
25#
發(fā)表于 2025-3-25 22:18:30 | 只看該作者
https://doi.org/10.1007/978-3-662-32915-3In Sections 13, 14 and 17 we have studied polynomial approximation on certain kinds of .-dimensional manifolds in C.. In this Section we consider the case . Let ∑ be a .-dimensional submanifold of an open set in C. with .. Let . be a compact set which lies on ∑ and contains a relatively open subset of ∑.
26#
發(fā)表于 2025-3-26 01:45:30 | 只看該作者
Preliminaries and Notations,Let . be a compact Hausdorff space.
27#
發(fā)表于 2025-3-26 05:00:43 | 只看該作者
28#
發(fā)表于 2025-3-26 09:09:26 | 只看該作者
Operational Calculus in One Variable,Let ? denote the algebra of all function . on –π≤θ≤π, with
29#
發(fā)表于 2025-3-26 12:57:53 | 只看該作者
30#
發(fā)表于 2025-3-26 17:12:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定州市| 武城县| 麻城市| 疏附县| 正阳县| 鄱阳县| 黄梅县| 乃东县| 西丰县| 秦安县| 龙里县| 琼结县| 龙口市| 武定县| 简阳市| 清新县| 平果县| 太湖县| 措勤县| 岳池县| 孙吴县| 西乡县| 潍坊市| 宜章县| 河曲县| 凤冈县| 景东| 乐清市| 西昌市| 通渭县| 射阳县| 泸定县| 锦屏县| 旬阳县| 轮台县| 鲁甸县| 日喀则市| 贡觉县| 临西县| 万全县| 台东县|