找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ball and Surface Arithmetics; Rolf-Peter Holzapfel Textbook 1998 Springer Fachmedien Wiesbaden 1998 algebra.algorithms.classification.fiel

[復制鏈接]
樓主: DUMMY
11#
發(fā)表于 2025-3-23 10:12:01 | 只看該作者
Orbital Surfaces,We work in the category of all compact complex normal algebraic surfaces with (at most) singularities of . type. A . on such a surface . is a formal sum ., where . = (., .; ...) is a (smooth) orbital curve on . and .. is an (arranged) abelian point on ., . = 1,...,., . = 1,..., .. The following axioms have to be satisfied:
12#
發(fā)表于 2025-3-23 13:51:12 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:04 | 只看該作者
Aspects of Mathematicshttp://image.papertrans.cn/b/image/180490.jpg
14#
發(fā)表于 2025-3-24 00:01:31 | 只看該作者
15#
發(fā)表于 2025-3-24 06:26:48 | 只看該作者
Handbuch der Laplace-Transformation 2. Its group of biholomorphic automorphisms is the projective group ?.((2,1), ?) = ?.((2,1), ?) acting on ? by fractional linear transformations. With obvious notations the corresponding (special) unitary group is defined by ..
16#
發(fā)表于 2025-3-24 08:32:20 | 只看該作者
Allgemeine Betrachtungen über Asymptotikalgebraic surface and has only cyclic singularities on .. Furthermore, we can assume that for any cyclic singularity . ∈ . there exists a smooth curve germ . on . through . such that (., .; ., .) is a reduced abelian point. A . along . is a pair (., .), . ≠ 0 a natural number. We say that the abelia
17#
發(fā)表于 2025-3-24 14:41:16 | 只看該作者
18#
發(fā)表于 2025-3-24 17:06:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:06 | 只看該作者
Partielle Differenzengleichungenxtend the notion of orbital surfaces. In the Galois theory orbital surfaces, orbital curves and points can be expressed by means of divisors and singularities. These are quite classical objects. The classical language does not work nicely in the general theory of surface coverings. Here we have to i
20#
發(fā)表于 2025-3-25 00:19:54 | 只看該作者
Ball Quotient Surfaces, 2. Its group of biholomorphic automorphisms is the projective group ?.((2,1), ?) = ?.((2,1), ?) acting on ? by fractional linear transformations. With obvious notations the corresponding (special) unitary group is defined by ..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
辽宁省| 新竹市| 莱西市| 高青县| 南和县| 化德县| 商都县| 武冈市| 榆林市| 永定县| 灌云县| 沽源县| 宣威市| 浦江县| 武乡县| 金昌市| 木兰县| 温泉县| 莲花县| 门源| 襄城县| 锦州市| 隆昌县| 沙河市| 德庆县| 临高县| 肃宁县| 莆田市| 咸阳市| 台北县| 天祝| 宁陕县| 固阳县| 石首市| 建始县| 巴中市| 梅州市| 东台市| 三江| 奉节县| 德庆县|