找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Balanced Silverman Games on General Discrete Sets; Gerald A. Heuer,Ulrike Leopold-Wildburger Book 1991 Springer-Verlag Berlin Heidelberg 1

[復制鏈接]
樓主: children
41#
發(fā)表于 2025-3-28 17:51:54 | 只看該作者
Concluding remarks on irreducibility,We conclude with brief remarks about the evidence that the reduced games obtained in Sections 8 and 9 are not further reducible. (Those in Sections 10 and 11 clearly are not.)
42#
發(fā)表于 2025-3-28 20:14:00 | 只看該作者
https://doi.org/10.1007/978-3-642-95663-8Bidding/Spending Models; Noncooperative Game Theory; Optimierungstheorie; Optimization Theory; Silverman
43#
發(fā)表于 2025-3-29 01:26:22 | 只看該作者
978-3-540-54372-5Springer-Verlag Berlin Heidelberg 1991
44#
發(fā)表于 2025-3-29 04:36:31 | 只看該作者
45#
發(fā)表于 2025-3-29 07:50:10 | 只看該作者
Edward I. Altman Ph.D.,James La Fleurd the penalty ν > 0. Players I and II choose numbers independently from S. and S., respectively. The higher number wins 1, unless it is at least T times as large as the other, in which case it loses ν. If the numbers are equal the payoff is zero.
46#
發(fā)表于 2025-3-29 11:53:56 | 只看該作者
47#
發(fā)表于 2025-3-29 18:35:38 | 只看該作者
Reifegradmodell des Sicherheitsmanagements, W?. and W?. are already the essential sets. The nine diagonals and the solutions of the corresponding 3 by 3 games are given below. We abbreviate the diagonal elements -1 and +1 by - and +, respectively. P = (p., p.,p.) is the optimal strategy for Player I, Q = (q.,q.,q.) that for Player II. V is the game value.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 13:08
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东兴市| 吴忠市| 丘北县| 遂溪县| 石城县| 清镇市| 榆树市| 西安市| 福安市| 江油市| 金塔县| 顺平县| 仁化县| 庆城县| 武山县| 张家川| 崇礼县| 曲阜市| 南华县| 阿勒泰市| 平阳县| 合肥市| 长沙市| 六枝特区| 高淳县| 临颍县| 乡城县| 桃园市| 辉南县| 怀柔区| 紫云| 当雄县| 泽州县| 咸宁市| 宁都县| 广东省| 泾阳县| 峨眉山市| 寿光市| 光泽县| 嫩江县|