找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Baer *-Rings; Sterling K. Berberian Book 1972 Springer-Verlag Berlin Heidelberg 1972 16P60, 16W10, 46L10.Algebra.Baer *-rings.algebra.matr

[復(fù)制鏈接]
樓主: Malinger
21#
發(fā)表于 2025-3-25 06:08:38 | 只看該作者
22#
發(fā)表于 2025-3-25 07:35:52 | 只看該作者
23#
發(fā)表于 2025-3-25 11:45:40 | 只看該作者
24#
發(fā)表于 2025-3-25 16:08:47 | 只看該作者
25#
發(fā)表于 2025-3-25 20:33:41 | 只看該作者
The Regular Ring of a Finite Baer ?-RingThe present chapter is based on (Berberian, .).
26#
發(fā)表于 2025-3-26 01:10:05 | 只看該作者
27#
發(fā)表于 2025-3-26 04:23:51 | 只看該作者
28#
發(fā)表于 2025-3-26 11:20:56 | 只看該作者
Additivity of Equivalence(.). such that (i) the ., are orthogonal, (ii) the . are orthogonal, and (iii) .~. for all ?∈.. We write . Thus, ., (.). are equivalent partitions of ., . [§17, Def. 1]. For each ?∈., we denote by ., a fixed partial isometry such that ., ..
29#
發(fā)表于 2025-3-26 14:01:40 | 只看該作者
Dimension in Finite Baer ?-Ringsof . require different techniques and are treated separately. A salient feature of the exposition is that virtually all results are obtained without assuming the parallelogram law (P); it is only in the final section on modularity (Section 34) that (P) is invoked.
30#
發(fā)表于 2025-3-26 17:48:21 | 只看該作者
https://doi.org/10.1007/978-3-476-05479-1llowing definition:. A ?-. (or .) is a ring with an involution .?.: . When . is also an algebra, over a field with involution .?. (the identity involution is allowed), we assume further that . and call . a ?-. {The complex ?-algebras are especially important special cases, but the main emphasis of t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 五莲县| 霍山县| 淮北市| 铜川市| 政和县| 共和县| 惠东县| 云梦县| 临西县| 手游| 涪陵区| 南陵县| 凤山县| 四子王旗| 军事| 大渡口区| 东莞市| 岳西县| 安阳市| 英德市| 会东县| 平乡县| 玉屏| 星子县| 雷州市| 塘沽区| 泌阳县| 兴业县| 改则县| 建昌县| 通山县| 吴川市| 成武县| 盈江县| 柏乡县| 如皋市| 昌邑市| 云南省| 定边县| 雅江县|