找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Backward Fuzzy Rule Interpolation; Shangzhu Jin,Qiang Shen,Jun Peng Book 2019 Springer Nature Singapore Pte Ltd. 2019 Artificial Intellige

[復(fù)制鏈接]
查看: 12258|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:47:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Backward Fuzzy Rule Interpolation
影響因子2023Shangzhu Jin,Qiang Shen,Jun Peng
視頻videohttp://file.papertrans.cn/181/180230/180230.mp4
發(fā)行地址Focuses on a novel approach: backward fuzzy rule interpolation and extrapolation (BFRI), which could significantlyexpand the applications of fuzzy rule interpolation and fuzzy inference.Proposes two t
圖書(shū)封面Titlebook: Backward Fuzzy Rule Interpolation;  Shangzhu Jin,Qiang Shen,Jun Peng Book 2019 Springer Nature Singapore Pte Ltd. 2019 Artificial Intellige
影響因子.This book chiefly presents a novel approach referred to as backward fuzzy rule interpolation and extrapolation (BFRI). BFRI allows observations that directly relate to the conclusion to be inferred or interpolated from other antecedents and conclusions. Based on the scale and move transformation interpolation, this approach supports both interpolation and extrapolation, which involve multiple hierarchical intertwined fuzzy rules, each with multiple antecedents. As such, it offers a means of broadening the applications of fuzzy rule interpolation and fuzzy inference. The book deals with the general situation, in which there may be more than one antecedent value missing for a given problem. Two techniques, termed the .parametric approach .and .feedback approach., are proposed in an attempt to perform backward interpolation with multiple missing antecedent values. In addition, to further enhance the versatility and potential of BFRI, the backward fuzzy interpolation method isextended to support α-cut based interpolation by employing a fuzzy interpolation mechanism for multi-dimensional input spaces (IMUL). Finally, from an integrated application analysis perspective, experimental stu
Pindex Book 2019
The information of publication is updating

書(shū)目名稱(chēng)Backward Fuzzy Rule Interpolation影響因子(影響力)




書(shū)目名稱(chēng)Backward Fuzzy Rule Interpolation影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Backward Fuzzy Rule Interpolation網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Backward Fuzzy Rule Interpolation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Backward Fuzzy Rule Interpolation被引頻次




書(shū)目名稱(chēng)Backward Fuzzy Rule Interpolation被引頻次學(xué)科排名




書(shū)目名稱(chēng)Backward Fuzzy Rule Interpolation年度引用




書(shū)目名稱(chēng)Backward Fuzzy Rule Interpolation年度引用學(xué)科排名




書(shū)目名稱(chēng)Backward Fuzzy Rule Interpolation讀者反饋




書(shū)目名稱(chēng)Backward Fuzzy Rule Interpolation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:55:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:29:57 | 只看該作者
地板
發(fā)表于 2025-3-22 06:01:17 | 只看該作者
https://doi.org/10.1007/978-3-540-31211-6ing indirect interpolative reasoning which involves several intertwined fuzzy rules, each with multiple antecedents. However, no existing technique, (including BFRI) considers the case where multiple antecedents are absent.
5#
發(fā)表于 2025-3-22 11:21:14 | 只看該作者
6#
發(fā)表于 2025-3-22 13:04:29 | 只看該作者
Transformation Based Backward Fuzzy Rule Interpolation with Multiple Missing Antecedent Values,ing indirect interpolative reasoning which involves several intertwined fuzzy rules, each with multiple antecedents. However, no existing technique, (including BFRI) considers the case where multiple antecedents are absent.
7#
發(fā)表于 2025-3-22 17:48:53 | 只看該作者
Application: Terrorism Risk Assessment Using BFRI, Terrorism risk assessment (TRA) therefore plays a crucial role in national and international security. In order to predict terrorist behaviour from a given set of evidence (including hypothesised scenarios), it is often necessary for investigators to reconstruct the possible scenarios that may have taken place.
8#
發(fā)表于 2025-3-22 22:57:52 | 只看該作者
9#
發(fā)表于 2025-3-23 03:09:12 | 只看該作者
Transformation Based Backward Fuzzy Rule Interpolation with Multiple Missing Antecedent Values,issing antecedent value to be interpolated in a backward fashion by exploiting the other given antecedents and the consequent. S-BFRI?works by performing indirect interpolative reasoning which involves several intertwined fuzzy rules, each with multiple antecedents. However, no existing technique, (
10#
發(fā)表于 2025-3-23 05:43:56 | 只看該作者
Application: Terrorism Risk Assessment Using BFRI,e to have a comprehensive security risk management programme including effective risk assessment and appropriate decision support for such activities. Terrorism risk assessment (TRA) therefore plays a crucial role in national and international security. In order to predict terrorist behaviour from a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江油市| 通榆县| 庄河市| 台东市| 淄博市| 曲沃县| 南城县| 华宁县| 育儿| 武鸣县| 双牌县| 信阳市| 莒南县| 大余县| 利辛县| 山阴县| 察隅县| 临夏县| 陕西省| 临海市| 聂荣县| 东阿县| 海淀区| 邻水| 灌南县| 巴楚县| 秭归县| 修文县| 济宁市| 阿克苏市| 綦江县| 响水县| 文登市| 烟台市| 仁化县| 射洪县| 新津县| 始兴县| 夏津县| 建德市| 枣强县|