找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: BMS Particles in Three Dimensions; Blagoje Oblak Book 2017 Springer International Publishing AG 2017 BMS Symmetry.BMS Group.Three-dimensio

[復(fù)制鏈接]
樓主: patch-test
21#
發(fā)表于 2025-3-25 04:24:18 | 只看該作者
Symmetries of Gravity in AdS,In this chapter we explore a physical model where the Virasoro group plays a key role, namely three-dimensional gravity on Anti-de Sitter (AdS) backgrounds and its putative dual two-dimensional conformal field theory (CFT). These considerations will be a basis and a guide for our study of asymptotically flat space-times in part III.
22#
發(fā)表于 2025-3-25 08:26:04 | 只看該作者
Classical BMS, SymmetryThe Bondi–Metzner–Sachs (BMS) group is an infinite-dimensional symmetry group of asymptotically flat gravity at null infinity, that extends Poincaré symmetry.
23#
發(fā)表于 2025-3-25 11:57:40 | 只看該作者
24#
發(fā)表于 2025-3-25 18:25:48 | 只看該作者
25#
發(fā)表于 2025-3-25 21:01:23 | 只看該作者
ConclusionWe have now completed our survey of the group-theoretic aspects of three-dimensional gravity, and in particular of BMS symmetry in three dimensions.
26#
發(fā)表于 2025-3-26 00:51:29 | 只看該作者
Charles X. Wang,Scott Webster,Sidong Zhangproblem that can be studied on the sole basis of symmetries, without any assumptions on the underlying microscopic theory. In this introduction we describe this strategy in some more detail, starting in Sect.?. with a broad overview of asymptotic symmetries in general and Bondi-Metzner-Sachs (BMS) s
27#
發(fā)表于 2025-3-26 04:32:01 | 只看該作者
28#
發(fā)表于 2025-3-26 12:10:15 | 只看該作者
NDE 4.0: Image and Sound Recognitionunitary representations, which are induced from representations of their translation subgroup combined with a so-called .. We interpret these representations as . propagating in space-time and having definite transformation properties under the corresponding symmetry group. This picture will be inst
29#
發(fā)表于 2025-3-26 16:18:54 | 只看該作者
30#
發(fā)表于 2025-3-26 18:54:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家川| 昔阳县| 桐乡市| 剑阁县| 都江堰市| 稷山县| 丰城市| 许昌市| 赤水市| 鸡东县| 连城县| 棋牌| 伊金霍洛旗| 嫩江县| 永康市| 武夷山市| 长岛县| 松溪县| 望江县| 太康县| 兴化市| 皋兰县| 万山特区| 化隆| 平阴县| 教育| 遂平县| 会宁县| 济宁市| 佛坪县| 湘乡市| 新竹县| 鹤壁市| 门源| 和林格尔县| 科技| 团风县| 常德市| 定边县| 特克斯县| 调兵山市|