找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: BEM-based Finite Element Approaches on Polytopal Meshes; Steffen Wei?er Book 2019 Springer Nature Switzerland AG 2019 BEM-based FEM.Trefft

[復制鏈接]
樓主: culinary
21#
發(fā)表于 2025-3-25 04:54:36 | 只看該作者
22#
發(fā)表于 2025-3-25 08:44:36 | 只看該作者
Reactions Involving Maleic Anhydrideontinuously during the last few years. This work presents a self-contained and systematic introduction, study and application of the BEM-based FEM with high-order approximation spaces on general polytopal meshes in two and three space dimensions. This approach makes use of local boundary integral fo
23#
發(fā)表于 2025-3-25 14:42:38 | 只看該作者
Michael A. Tallon,Xuejun (Jay) Liund engineering. The approach relies on the decomposition of the underlying domain into elements and the construction of a discrete approximation space over the given discretization. The BEM-based finite element method can be seen as a generalization in order to handle more general elements in the me
24#
發(fā)表于 2025-3-25 16:10:49 | 只看該作者
https://doi.org/10.1007/978-3-319-29454-4ns, the application of pointwise interpolation is not well defined and in the presence of layers the use of regular and uniform meshes is not optimal in some sense. For these reasons quasi-interpolation operators for non-smooth functions over polytopal meshes are introduced and analysed in this chap
25#
發(fā)表于 2025-3-25 22:52:18 | 只看該作者
https://doi.org/10.1007/978-3-319-29454-4a short introduction into this topic with a special emphasis on its application in the BEM-based FEM. Therefore, the boundary integral operators for the Laplace problem are reviewed in two- and three-dimensions and corresponding boundary integral equations are derived. Their discretization is realiz
26#
發(fā)表于 2025-3-26 00:29:04 | 只看該作者
27#
發(fā)表于 2025-3-26 05:59:55 | 只看該作者
28#
發(fā)表于 2025-3-26 11:49:42 | 只看該作者
BEM-based Finite Element Approaches on Polytopal Meshes978-3-030-20961-2Series ISSN 1439-7358 Series E-ISSN 2197-7100
29#
發(fā)表于 2025-3-26 13:19:08 | 只看該作者
30#
發(fā)表于 2025-3-26 19:47:36 | 只看該作者
Adaptive BEM-Based Finite Element Method,al-oriented techniques on general polytopal meshes. Whereas, we derive reliability and efficiency estimates for the first mentioned estimator, we discuss the benefits and potentials of the second one for general meshes.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 12:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
昭觉县| 丹寨县| 巧家县| 南昌县| 淳化县| 涿州市| 西宁市| 辽阳县| 衢州市| 濮阳县| 芷江| 杭锦后旗| 调兵山市| 宝坻区| 景泰县| 太保市| 武山县| 铅山县| 海城市| 鸡东县| 东丽区| 呼伦贝尔市| 彭州市| 通化县| 江口县| 大石桥市| 纳雍县| 富裕县| 富民县| 津南区| 启东市| 泰顺县| 白山市| 嵊州市| 株洲县| 屏山县| 乐亭县| 大庆市| 西丰县| 平度市| 屏东县|