找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Axiomatic Set Theory; Gaisi Takeuti,Wilson M. Zaring Textbook 1973 Springer-Verlag New York Inc. 1973 forcing.proof.set theory

[復(fù)制鏈接]
查看: 43540|回復(fù): 63
樓主
發(fā)表于 2025-3-21 16:42:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Axiomatic Set Theory
影響因子2023Gaisi Takeuti,Wilson M. Zaring
視頻videohttp://file.papertrans.cn/168/167730/167730.mp4
學(xué)科分類Graduate Texts in Mathematics
圖書封面Titlebook: Axiomatic Set Theory;  Gaisi Takeuti,Wilson M. Zaring Textbook 1973 Springer-Verlag New York Inc. 1973 forcing.proof.set theory
影響因子This text deals with three basic techniques for constructing models of Zermelo-Fraenkel set theory: relative constructibility, Cohen‘s forcing, and Scott-Solovay‘s method of Boolean valued models. Our main concern will be the development of a unified theory that encompasses these techniques in one comprehensive framework. Consequently we will focus on certain funda- mental and intrinsic relations between these methods of model construction. Extensive applications will not be treated here. This text is a continuation of our book, "I ntroduction to Axiomatic Set Theory," Springer-Verlag, 1971; indeed the two texts were originally planned as a single volume. The content of this volume is essentially that of a course taught by the first author at the University of Illinois in the spring of 1969. From the first author‘s lectures, a first draft was prepared by Klaus Gloede with the assistance of Donald Pelletier and the second author. This draft was then rcvised by the first author assisted by Hisao Tanaka. The introductory material was prepared by the second author who was also responsible for the general style of exposition throughout the text. We have inc1uded in the introductory mate
Pindex Textbook 1973
The information of publication is updating

書目名稱Axiomatic Set Theory影響因子(影響力)




書目名稱Axiomatic Set Theory影響因子(影響力)學(xué)科排名




書目名稱Axiomatic Set Theory網(wǎng)絡(luò)公開度




書目名稱Axiomatic Set Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Axiomatic Set Theory被引頻次




書目名稱Axiomatic Set Theory被引頻次學(xué)科排名




書目名稱Axiomatic Set Theory年度引用




書目名稱Axiomatic Set Theory年度引用學(xué)科排名




書目名稱Axiomatic Set Theory讀者反饋




書目名稱Axiomatic Set Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:13:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:26:18 | 只看該作者
Boolean-Valued Structures,ruth values “truth” and “falsehood” by any complete Boolean algebra B. While some of the basic definitions and theorems can be generalized to the B-valued case almost mechanically the intuitive ideas behind these general notions are more difficult to perceive.
地板
發(fā)表于 2025-3-22 07:06:58 | 只看該作者
5#
發(fā)表于 2025-3-22 09:50:56 | 只看該作者
Boolean-Valued Relative Constructibility,will denote the language of the first-order predicate calculus with predicate constants = and ?. In addition L is a first order language that is an extension of L.. In most applications L will have only finitely many constants but it may have infinitely many. M and M’ will be two B-valued structures
6#
發(fā)表于 2025-3-22 15:04:24 | 只看該作者
Forcing,hroughout this section, . denotes a standard transitive model of ., . ∈ . is a partial order structure, and . is the corresponding .-complete Boolean algebra of regular open sets of . in the relative sense of .. Further-more we have.Such that ., ., and . are related to each as described in §2. Thus
7#
發(fā)表于 2025-3-22 19:10:13 | 只看該作者
8#
發(fā)表于 2025-3-22 23:37:30 | 只看該作者
Cardinals in V(B),ollary 14.23. However, since this translation requires the existence of elementary subsystems of . and thus cannot be carried out in . we shall try to give direct proofs in .. Corresponding to the fact that every cardinal in .[.], where 〈., .〉 is a setting for forcing and . is .-generic over ., is a
9#
發(fā)表于 2025-3-23 02:58:50 | 只看該作者
Axiomatic Set Theory978-1-4684-8751-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
10#
發(fā)表于 2025-3-23 06:43:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延庆县| 十堰市| 兰西县| 定西市| 合水县| 威信县| 原阳县| 镇巴县| 浦城县| 雅安市| 杭锦后旗| 察哈| 延吉市| 灵山县| 驻马店市| 厦门市| 自治县| 沅陵县| 襄城县| 锡林郭勒盟| 望谟县| 肇庆市| 博湖县| 肇庆市| 太和县| 怀宁县| 永泰县| 互助| 南澳县| 阿拉善右旗| 武威市| 五华县| 屏边| 麦盖提县| 明溪县| 永新县| 波密县| 保亭| 潜山县| 长泰县| 全南县|