找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Medicine; 22nd International C Joseph Finkelstein,Robert Moskovitch,Enea Parimbel Conference proceedings 2024 Th

[復(fù)制鏈接]
樓主: hearken
21#
發(fā)表于 2025-3-25 05:40:47 | 只看該作者
Daniel I. Shapiro,Huijun Li,Larry J. Seidmanors of childhood obesity, taking into account the relationship among the data gathered in different visits. The experiments carried out on the data collected from 386 children from Girona and Figueres (Spain) demonstrate the relevance of discriminant frequent patterns for childhood overweight prediction.
22#
發(fā)表于 2025-3-25 07:55:08 | 只看該作者
23#
發(fā)表于 2025-3-25 15:33:11 | 只看該作者
Applying Gaussian Mixture Model for Clustering Analysis of Emergency Room Patients Based on Intubatir clustering based on intubation status. Out of 137,722 cases spanning January 1, 2017, to September 30, 2023, 1.14% underwent intubation. The study included the following variables: continuous variables such as WBC (White Blood Cell count), Hb (Hemoglobin), Hct (Hematocrit), MCV (Mean Corpuscular V
24#
發(fā)表于 2025-3-25 19:31:55 | 只看該作者
25#
發(fā)表于 2025-3-25 20:01:36 | 只看該作者
Boosting Multitask Decomposition: Directness, Sequentiality, Subsampling, Cross-Gradients largely empirical and computationally demanding process. To reduce the computational cost while maintaining statistical rigor, we investigate (1) the concept of direct transfer effect between tasks, (2) the use of sequential learning to minimize the number of test-train data splits, (3) the possibi
26#
發(fā)表于 2025-3-26 03:59:24 | 只看該作者
Diagnostic Modeling to Identify Unrecognized Inpatient Hypercapnia Using Health Record Data standard diagnostic test, but it is painful and not routine. When clinicians fail to make the diagnosis, it is often because an arterial blood gas was not obtained. This ‘partial verification’ of CO. levels presents a challenge for machine learning algorithms. We assessed the accuracy of two machin
27#
發(fā)表于 2025-3-26 06:09:55 | 只看該作者
Enhancing Hypotension Prediction in?Real-Time Patient Monitoring Through Deep Learning: A Novel Applmental in this field, are hampered by their dependence on structured historical data and manual feature extraction techniques. These methods often fall short of recognizing the intricate patterns present in physiological signals. Addressing this limitation, our study introduces an innovative applica
28#
發(fā)表于 2025-3-26 09:55:38 | 只看該作者
29#
發(fā)表于 2025-3-26 15:39:35 | 只看該作者
Frequent Patterns of?Childhood Overweight from?Longitudinal Data on?Parental and?Early-Life of?Infanomising solutions thanks to the use of Artificial Intelligence applied to data from cohorts of children. Previous studies have analyzed the data without taking into account the relationship of data regarding when they are collected. In this work, frequent pattern mining is used to find the risk fact
30#
發(fā)表于 2025-3-26 20:33:05 | 只看該作者
Fuzzy Neural Network Model Based on?Uni-Nullneuron in?Extracting Knowledge About Risk Factors of?Matchildren. This paper introduces an interpretable fuzzy neural network model that uses artificial intelligence (AI) techniques for early risk detection in pregnancy. The model, which integrates a fuzzy inference system and a defuzzification process across three layers, provides deep insights by formu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北川| 陆丰市| 邹城市| 凤城市| 诏安县| 大厂| 潢川县| 太保市| 龙门县| 金秀| 启东市| 榕江县| 江永县| 荣昌县| 巩留县| 玉溪市| 贵阳市| 犍为县| 牟定县| 平度市| 葫芦岛市| 呼伦贝尔市| 元江| 乌鲁木齐市| 建德市| 天峻县| 比如县| 铜陵市| 新晃| 云浮市| 洪洞县| 边坝县| 中西区| 陈巴尔虎旗| 澄江县| 紫阳县| 石台县| 砚山县| 扎赉特旗| 内黄县| 墨竹工卡县|