找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Security; Enhancing Protection Tuomo Sipola,Janne Alatalo,Tero Kokkonen Book 2024 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: 游牧
21#
發(fā)表于 2025-3-25 05:59:43 | 只看該作者
22#
發(fā)表于 2025-3-25 11:00:25 | 只看該作者
Artificial Intelligence and Differential Privacy: Review of Protection Estimate Modelseoretical, and relational proof of privacy, which makes it important to understand the actual behavior of the DP-based protection models. For this purpose, we will review what kind of frameworks or models are available to estimate how well an implemented differential privacy model works. Special att
23#
發(fā)表于 2025-3-25 14:26:50 | 只看該作者
24#
發(fā)表于 2025-3-25 19:54:34 | 只看該作者
25#
發(fā)表于 2025-3-25 23:04:30 | 只看該作者
Who Guards the Guardians? On Robustness of Deep Neural Networksther to mislead and change the model’s behavior or to leak information about the training data and potentially about the model in use. These attacks can be readily mapped within the Confidentiality, Integrity, and Availability triad components. We lay out the potential threat models and include the
26#
發(fā)表于 2025-3-26 03:50:19 | 只看該作者
27#
發(fā)表于 2025-3-26 05:16:29 | 只看該作者
28#
發(fā)表于 2025-3-26 09:07:24 | 只看該作者
On the Cybersecurity of Logistics in the Age of Artificial Intelligencely involved in national critical infrastructures (CI): transportation is directly identified as one of the CI sectors, and many other CI sectors cannot adequately function without properly working logistics. To optimize business processes and automate operational technology, different machine learni
29#
發(fā)表于 2025-3-26 15:22:31 | 只看該作者
30#
發(fā)表于 2025-3-26 19:49:38 | 只看該作者
On Protection of the Next-Generation Mobile Networks Against Adversarial Examplesgent machine learning (ML)-driven network components to adversarial effects. Due to the shared nature of wireless mediums, these components may be susceptible to sophisticated attacks that can manipulate the training and inference processes of the AI/ML models over the air. In our research, we focus
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澎湖县| 莆田市| 营山县| 石泉县| 光泽县| 色达县| 宜城市| 巫山县| 莱州市| 邯郸市| 星子县| 永吉县| 大城县| 汾西县| 尖扎县| 南城县| 丰城市| 静海县| 双柏县| 垣曲县| 惠水县| 福清市| 玉门市| 荣成市| 恭城| 丰顺县| 龙川县| 华蓥市| 晋城| 襄城县| 平昌县| 牟定县| 贡嘎县| 龙井市| 唐山市| 政和县| 建湖县| 江永县| 萨迦县| 隆子县| 应城市|