找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arbitrary Reference in Logic and Mathematics; Massimiliano Carrara,Enrico Martino Book 2024 Springer Nature Switzerland AG 2024 Arbitrary

[復(fù)制鏈接]
樓主: Encounter
11#
發(fā)表于 2025-3-23 13:34:24 | 只看該作者
eference. We argue that . is essential for both formal and informal logical deduction, as well as for the semantics of quantifiers. We propose to understand . as direct reference via an ideal act of choice, setting the stage for further developments in later chapters.
12#
發(fā)表于 2025-3-23 16:43:26 | 只看該作者
13#
發(fā)表于 2025-3-23 19:18:41 | 只看該作者
14#
發(fā)表于 2025-3-24 00:20:48 | 只看該作者
15#
發(fā)表于 2025-3-24 06:11:20 | 只看該作者
16#
發(fā)表于 2025-3-24 08:38:01 | 只看該作者
ng mathematician relates to the various possible interpretations in model theory. To this purpose we introduce some .. Additionally, we aim to clarify how one can deduce logical consequences of the axioms by reasoning on a single interpretation, even when a theory has non-equivalent elementary model
17#
發(fā)表于 2025-3-24 13:05:34 | 只看該作者
ontological commitment; (b) understanding our semantics does not require any prior mathematical concepts; and (c) although . is not universally applicable, it still offers significant applicability, especially in mathematics. We conclude the chapter arguing that second-order logic, as interpreted t
18#
發(fā)表于 2025-3-24 18:34:09 | 只看該作者
19#
發(fā)表于 2025-3-24 21:47:04 | 只看該作者
a mereological foundation of set theory is achievable within first order logic. Furthermore, we show how a mereological codification of ordered pairs is achievable with a very restricted use of the notion of .. Finally, in the last section of this chapter we show that, adopting a relativistic notio
20#
發(fā)表于 2025-3-24 23:23:31 | 只看該作者
https://doi.org/10.1007/978-3-031-66452-6Arbitrary reference; Plural reference; Second order logic; Plural quantification; Logicality of second o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松阳县| 西和县| 南召县| 锡林浩特市| 团风县| 沐川县| 得荣县| 滁州市| 商河县| 浦江县| 大埔区| 德昌县| 新民市| 临夏市| 南通市| 黄平县| 桂东县| 固安县| 丹寨县| 龙海市| 台江县| 苏尼特右旗| 佛山市| 山阴县| 文成县| 营口市| 娱乐| 金门县| 合山市| 济南市| 河间市| 大余县| 罗城| 岢岚县| 唐河县| 社旗县| 武陟县| 阿图什市| 德兴市| 汨罗市| 宁武县|