找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Mathematical Analysis and Computations I; 1st SGMC, Statesboro Divine Wanduku,Shijun Zheng,Ephraim Agyingi Conference proceedings 2

[復制鏈接]
樓主: 審美家
11#
發(fā)表于 2025-3-23 12:30:06 | 只看該作者
12#
發(fā)表于 2025-3-23 17:05:48 | 只看該作者
https://doi.org/10.1007/978-3-658-27770-3tionally, mathematical questions related to chess, its pieces, its board, and the many extensions and generalizations, have been posed for hundreds of years. In particular, chess pieces can have move sets beyond those in the established game of chess. Here we use words to describe nonattacking arran
13#
發(fā)表于 2025-3-23 18:10:19 | 只看該作者
14#
發(fā)表于 2025-3-23 23:00:02 | 只看該作者
15#
發(fā)表于 2025-3-24 03:51:13 | 只看該作者
Melanie Fabel-Lamla,Sabine Klomfa?u through the concept of . for classes of polynomial, C-finite, holonomic, and the most recent addition C.-finite sequences. For each of these classes, we discuss in detail various aspects of the guess and check, generating functions, closure properties, and closed-form solutions. Every theorem is p
16#
發(fā)表于 2025-3-24 10:16:42 | 只看該作者
17#
發(fā)表于 2025-3-24 10:59:54 | 只看該作者
Silke Müller-Hermann,Roland Becker-Lenza compartmental SEIR (susceptible-exposed-infected-removed), with an expanded multidimensional state space for the MC by utilizing two discrete time measures for representing both the “disease” states and the age in each state of the nodes in the HCSN. Moreover, characterizations of the MC at both t
18#
發(fā)表于 2025-3-24 16:57:05 | 只看該作者
19#
發(fā)表于 2025-3-24 19:41:04 | 只看該作者
Applied Mathematical Analysis and Computations I978-3-031-69706-7Series ISSN 2194-1009 Series E-ISSN 2194-1017
20#
發(fā)表于 2025-3-25 00:25:02 | 只看該作者
https://doi.org/10.1007/978-3-658-42309-4ena such as the one-dimensional advection equation, the one-dimensional diffusion equation, the one-dimensional advection-diffusion equation, and finally to the multi-dimensional advection-diffusion equation. Further applications are discussed.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-25 02:54
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
吉木乃县| 朝阳县| 松桃| 巫溪县| 五华县| 崇信县| 贵德县| 巴林右旗| 辉南县| 祁阳县| 大同市| 金昌市| 沅陵县| 额尔古纳市| 靖西县| 喀喇沁旗| 望谟县| 汉川市| 绥芬河市| 调兵山市| 视频| 太康县| 乌鲁木齐市| 阳西县| 无极县| 沙洋县| 凤庆县| 孟连| 甘德县| 北辰区| 苗栗市| 沅江市| 遂宁市| 叙永县| 阿瓦提县| 邵东县| 中方县| 冕宁县| 台北县| 灵璧县| 越西县|