找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Computer Sciences in Engineering; 11th Workshop on Eng Juan Carlos Figueroa-García,German Hernández,Elvis Conference proceedings 20

[復(fù)制鏈接]
樓主: 徽章
11#
發(fā)表于 2025-3-23 12:06:39 | 只看該作者
https://doi.org/10.1007/978-3-662-49459-2d vehicle. This setup facilitated the collection of large datasets, which were subsequently processed using the YOLO AI algorithm to effectively detect and classify road pavement conditions. The experiment‘s results underscore the effectiveness of combining mobile mapping technology, programming, an
12#
發(fā)表于 2025-3-23 16:44:33 | 只看該作者
13#
發(fā)表于 2025-3-23 19:14:55 | 只看該作者
14#
發(fā)表于 2025-3-23 22:26:53 | 只看該作者
15#
發(fā)表于 2025-3-24 03:55:24 | 只看該作者
Deep Learning-Based Object Detection of Relevant Morphological Traits for Enhancing Automatic Classinces in recent years, especially with deep learning techniques, the complexity of emerging models still needs to accurately capture the fine morphological features that are key to manual taxonomic classification. This paper examines how a semantic detector like YOLO performs when dealing with fine-g
16#
發(fā)表于 2025-3-24 07:34:36 | 只看該作者
17#
發(fā)表于 2025-3-24 12:59:37 | 只看該作者
Improvement in?the?Management of?Potable Water Distribution Using Data Science for?the?Detection andapproach between computational capabilities and expert judgment results in useful models that contribute to the optimal management of the water service and the utilization of modern technological tools.
18#
發(fā)表于 2025-3-24 18:06:10 | 只看該作者
Wrist Motion Pattern Recognition from?EMG Signal Processing Using Machine Learning and?Neural Networifier achieved an accuracy of 75%. In contrast, the neural network, specifically a multilayer neural network, achieved an accuracy of 90%. Including PCA for feature selection significantly contributed to the overall performance improvement in both classifiers. This study’s findings show the potentia
19#
發(fā)表于 2025-3-24 20:44:38 | 只看該作者
20#
發(fā)表于 2025-3-24 23:11:36 | 只看該作者
Enhancing the?Diagnostic Accuracy of?Diabetes and?Prediabetes with?Neural Network-Based Area Under t OGTT. Artificial neural networks (ANNs) have shown significant potential in enhancing the diagnosis of diabetes and prediabetes. This study explores the application of ANNs for diagnosing diabetes and prediabetes, utilizing AUCG and AUCI as diagnostic metrics. A data set of 188 individuals diagnose
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓬溪县| 葫芦岛市| 高碑店市| 皮山县| 永嘉县| 秀山| 海伦市| 尼玛县| 洪湖市| 茌平县| 楚雄市| 姚安县| 类乌齐县| 博湖县| 逊克县| 宣威市| 西充县| 秦皇岛市| 襄樊市| 宝丰县| 木兰县| 芦溪县| 象州县| 海兴县| 抚顺县| 霍林郭勒市| 峡江县| 莱州市| 宜黄县| 睢宁县| 兴安盟| 甘肃省| 恩施市| 浏阳市| 镇坪县| 密云县| 上饶县| 衡水市| 武强县| 渝北区| 尉氏县|