找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Machine Learning in Hydroclimatology; Roshan Srivastav,Purna C. Nayak Book 2025 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
樓主: Sentry
31#
發(fā)表于 2025-3-26 21:53:28 | 只看該作者
32#
發(fā)表于 2025-3-27 04:02:23 | 只看該作者
Model-Based User Interface Reengineering,for model evaluation. Results show that both models perform well but Bi-LSTM is slightly better than LSTM in terms of both statistical measures. These results of both models are with different values of hyperparameters. The performance of these models can be different with the same values of hyperpa
33#
發(fā)表于 2025-3-27 07:26:46 | 只看該作者
34#
發(fā)表于 2025-3-27 12:43:51 | 只看該作者
Franco Dammacco,Domenico Sansonnod that linear ranked selected GA-ANN is the best-fitted model for both training and testing data. The CSS obtained for optimized input values for clay fraction by weight (CP), weighted geometric standard deviation of sediment mixture (SM), and dimensionless dry bulk unit weight of cohesive sediment
35#
發(fā)表于 2025-3-27 17:01:58 | 只看該作者
36#
發(fā)表于 2025-3-27 21:20:30 | 只看該作者
Franco Dammacco,Domenico Sansonnoor of 0.142, compared to LSTM’s coefficient of determination of 0.865 and root mean square error of 0.148. GRU also had a lower mean absolute error of 0.097 compared to LSTM’s mean absolute error of 0.101. The study concludes that both GRU and LSTM can be used effectively in SSL modeling. However, G
37#
發(fā)表于 2025-3-27 22:40:53 | 只看該作者
38#
發(fā)表于 2025-3-28 05:05:32 | 只看該作者
https://doi.org/10.1007/978-4-431-67005-6f each dataset in the case of extreme rainfalls with respect to IMDAA gridded rainfall (i.e., IMD Re-analysis), which has been taken as the observed/reference dataset. In this study, the quantile mapping and linear scaling bias correction methods are utilized to correct the rainfall datasets. The pr
39#
發(fā)表于 2025-3-28 07:45:23 | 只看該作者
2520-1298 s the impact of climate change on flood risks, drought occurrences, and reservoir operations, providing insights into how these phenomena affect water resource management...To provide practical solutions, the b978-3-031-64405-4978-3-031-64403-0Series ISSN 2520-1298 Series E-ISSN 2520-1301
40#
發(fā)表于 2025-3-28 13:40:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄龙县| 凤翔县| 思南县| 东丰县| 理塘县| 娄烦县| 玛曲县| 霸州市| 南江县| 五台县| 永寿县| 鹤岗市| 隆回县| 旌德县| 长子县| 潮州市| 比如县| 昌平区| 封丘县| 会同县| 墨玉县| 柘荣县| 舒兰市| 洪洞县| 无棣县| 嘉义县| 宿州市| 防城港市| 将乐县| 花垣县| 龙陵县| 昌宁县| 宣汉县| 绥阳县| 荔波县| 灯塔市| 寿宁县| 砀山县| 德化县| 开江县| 龙南县|