找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Aspects in Information and Management; 18th International C Smita Ghosh,Zhao Zhang Conference proceedings 2024 The Editor(s) (i

[復(fù)制鏈接]
樓主: Awkward
41#
發(fā)表于 2025-3-28 16:04:40 | 只看該作者
https://doi.org/10.1007/978-3-030-75216-3information about all clients is challenging. When client information is provided incrementally, this gives rise to the .. Both the online facility location problem with general facility costs and the one with uniform facility cost have attracted the attention of researchers. In the existing literat
42#
發(fā)表于 2025-3-28 20:24:59 | 只看該作者
43#
發(fā)表于 2025-3-29 00:12:28 | 只看該作者
44#
發(fā)表于 2025-3-29 05:35:48 | 只看該作者
Squeezed States using Parametric Processes,ality. A .-cycle partitioning is a set of . vertex-disjoint .-cycles, i.e. cycles containing exactly . vertices (and thus . edges). The minimum weight .-cycle partition problem (MinWkCP) aims to compute a .-cycle partition with minimum total edge weight. The minimum weight .-path partition problem (
45#
發(fā)表于 2025-3-29 08:53:19 | 只看該作者
46#
發(fā)表于 2025-3-29 14:54:24 | 只看該作者
47#
發(fā)表于 2025-3-29 17:56:49 | 只看該作者
Approximation Algorithm for?the?Maximum Interval Multi-cover Problemquirement ., the goal of the . (MaxIMC) problem is to find a sub-collection of intervals . with . to maximize the number of fully-covered points, where a point . is fully-covered by . if it belongs to at least . intervals of .. In this paper, we present a .-approximation algorithm for the MaxIMC problem.
48#
發(fā)表于 2025-3-29 23:44:25 | 只看該作者
49#
發(fā)表于 2025-3-30 00:01:39 | 只看該作者
50#
發(fā)表于 2025-3-30 04:28:01 | 只看該作者
Approximation Algorithm for?the?Maximum Interval Multi-cover Problemquirement ., the goal of the . (MaxIMC) problem is to find a sub-collection of intervals . with . to maximize the number of fully-covered points, where a point . is fully-covered by . if it belongs to at least . intervals of .. In this paper, we present a .-approximation algorithm for the MaxIMC pro
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 02:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
应城市| 内黄县| 社会| 略阳县| 始兴县| 吴旗县| 封开县| 屏山县| 陆丰市| 横山县| 延吉市| 修文县| 蕉岭县| 旅游| 隆安县| 山丹县| 巴马| 昔阳县| 舞钢市| 阿尔山市| 航空| 讷河市| 岗巴县| 女性| 广西| 屯门区| 永嘉县| 通江县| 梨树县| 万年县| 永胜县| 科技| 谢通门县| 阿坝县| 溧阳市| 焦作市| 陵川县| 浦城县| 宜都市| 刚察县| 乌审旗|