找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Quasi—Fractal Logic of Smart Systems; Theory and Practice Natalia Serdyukova,Vladimir Serdyukov Book 2024 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: Colossal
21#
發(fā)表于 2025-3-25 03:21:02 | 只看該作者
Presystem Concept: Quasi - Fractal Probabilistic Logic: The Conditional Digitalization Function: MoThis chapter is an introduction to Chap. ., which deals with chaotic systems and the logic of chaotic systems. It contains the necessary auxiliary information related to the tools of chaotic systems. Some questions are also raised for further decision..The chapter deals with issues:
22#
發(fā)表于 2025-3-25 10:47:38 | 只看該作者
Quasi - Fractal Propositional Algebra Digitalization of Propositional Algebra and NPC,heres of functioning of human society and creates a symbiosis of the virtual and real human environment. Concepts such as digital twins, innovative digital business models, and so on, have appeared and are used in practice. Naturally, the question arises about the digital evaluation of logical state
23#
發(fā)表于 2025-3-25 15:28:14 | 只看該作者
Quasi - Fractal NPC: Digitalization of Connections of Smart Systems (Expressed in the Language of Ninfinite ordinal number of levels. So, to describe temporal logic from the point of view of algebra to clear up (to measure) the truth value of closed formulas of the first order language of the finite signature with equality and to clear up connections between various kinds of temporal logics while
24#
發(fā)表于 2025-3-25 18:23:59 | 只看該作者
25#
發(fā)表于 2025-3-25 23:20:25 | 只看該作者
26#
發(fā)表于 2025-3-26 04:04:48 | 只看該作者
Quasi - Fractal Temporal Topological Logic with Time Parameter Over Topological Space,o temporal logic is briefly considered. These includes the following main points:.After that in this chapter the following questions are considered:.The following questions are considered regarding the logic of linear time:.The chapter deals with issues related to quasi - fractal temporal topologica
27#
發(fā)表于 2025-3-26 04:53:05 | 只看該作者
28#
發(fā)表于 2025-3-26 12:10:46 | 只看該作者
29#
發(fā)表于 2025-3-26 13:36:27 | 只看該作者
30#
發(fā)表于 2025-3-26 17:11:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 02:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牡丹江市| 太保市| 桂林市| 林甸县| 金坛市| 兴文县| 永新县| 北流市| 娄底市| 石城县| 河津市| 凤翔县| 阳朔县| 苏尼特右旗| 成都市| 简阳市| 武胜县| 建昌县| 温泉县| 鄂温| 宣恩县| 海宁市| 托克逊县| 福泉市| 大悟县| 通化县| 昭苏县| 安阳县| 张掖市| 灵璧县| 吴忠市| 沙洋县| 永登县| 古丈县| 溆浦县| 北碚区| 启东市| 合川市| 合山市| 女性| 即墨市|