找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Quasi—Fractal Logic of Smart Systems; Theory and Practice Natalia Serdyukova,Vladimir Serdyukov Book 2024 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: Colossal
21#
發(fā)表于 2025-3-25 03:21:02 | 只看該作者
Presystem Concept: Quasi - Fractal Probabilistic Logic: The Conditional Digitalization Function: MoThis chapter is an introduction to Chap. ., which deals with chaotic systems and the logic of chaotic systems. It contains the necessary auxiliary information related to the tools of chaotic systems. Some questions are also raised for further decision..The chapter deals with issues:
22#
發(fā)表于 2025-3-25 10:47:38 | 只看該作者
Quasi - Fractal Propositional Algebra Digitalization of Propositional Algebra and NPC,heres of functioning of human society and creates a symbiosis of the virtual and real human environment. Concepts such as digital twins, innovative digital business models, and so on, have appeared and are used in practice. Naturally, the question arises about the digital evaluation of logical state
23#
發(fā)表于 2025-3-25 15:28:14 | 只看該作者
Quasi - Fractal NPC: Digitalization of Connections of Smart Systems (Expressed in the Language of Ninfinite ordinal number of levels. So, to describe temporal logic from the point of view of algebra to clear up (to measure) the truth value of closed formulas of the first order language of the finite signature with equality and to clear up connections between various kinds of temporal logics while
24#
發(fā)表于 2025-3-25 18:23:59 | 只看該作者
25#
發(fā)表于 2025-3-25 23:20:25 | 只看該作者
26#
發(fā)表于 2025-3-26 04:04:48 | 只看該作者
Quasi - Fractal Temporal Topological Logic with Time Parameter Over Topological Space,o temporal logic is briefly considered. These includes the following main points:.After that in this chapter the following questions are considered:.The following questions are considered regarding the logic of linear time:.The chapter deals with issues related to quasi - fractal temporal topologica
27#
發(fā)表于 2025-3-26 04:53:05 | 只看該作者
28#
發(fā)表于 2025-3-26 12:10:46 | 只看該作者
29#
發(fā)表于 2025-3-26 13:36:27 | 只看該作者
30#
發(fā)表于 2025-3-26 17:11:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 06:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁都县| 叶城县| 汉中市| 崇阳县| 革吉县| 双桥区| 时尚| 温泉县| 沈丘县| 阳城县| 清镇市| 博兴县| 林芝县| 岳普湖县| 穆棱市| 扶风县| 无为县| 丘北县| 双鸭山市| 自贡市| 乐亭县| 霍邱县| 濮阳市| 修文县| 靖西县| 西盟| 广宗县| 会东县| 家居| 临泉县| 许昌市| 珠海市| 堆龙德庆县| 闻喜县| 光泽县| 信阳市| 名山县| 合川市| 四会市| 闽清县| 政和县|