找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; 15th International C Ying Tan,Yuhui Shi Conference proceedings 2024 The Editor(s) (if applicable) and The A

[復制鏈接]
樓主: 密度
11#
發(fā)表于 2025-3-23 12:34:43 | 只看該作者
Strategisches Kompetenz-Managementctively, this paper designs a modified variable velocity strategy particle swarm optimization algorithm. The algorithm incorporates whale encircling and flipping, along with an inertia weight updating strategy for random perturbation, known as WETVVS-MOPSO. The results show that WETVVS-MOPSO significantly outperforms its competitors.
12#
發(fā)表于 2025-3-23 14:07:01 | 只看該作者
13#
發(fā)表于 2025-3-23 19:32:23 | 只看該作者
14#
發(fā)表于 2025-3-24 02:14:12 | 只看該作者
15#
發(fā)表于 2025-3-24 02:51:28 | 只看該作者
Gründungsintention von Akademikernof the algorithm on 8 benchmark functions. Experimental results demonstrate that our improved fusion strategy has superior comprehensive performance over advanced optimization algorithms such as the Artificial Rabbit optimization, implying evident superiority and application potential of our strategy.
16#
發(fā)表于 2025-3-24 09:16:09 | 只看該作者
17#
發(fā)表于 2025-3-24 14:23:53 | 只看該作者
Multi-strategy Enhanced Particle Swarm Optimization Algorithm for?Elevator Group Schedulingloyed to search the nearby solution spaces to further avoid local optimum. Simulation results have demonstrated that the proposed algorithm can achieve a shorter passenger waiting time than traditional particle swarm optimization.
18#
發(fā)表于 2025-3-24 17:58:32 | 只看該作者
Convolutional Neural Network Architecture Design Using an Improved Surrogate-Assisted Particle Swarmerify the proposed algorithm and compare it with some mainstream network structures and processes. Experimental results show that the classification accuracy of the proposed algorithm is equivalent to or even better than similar algorithms and consumes fewer computing resources.
19#
發(fā)表于 2025-3-24 19:27:31 | 只看該作者
20#
發(fā)表于 2025-3-25 01:43:48 | 只看該作者
Multi-strategy Integration Model Based on?Black-Winged Kite Algorithm and?Artificial Rabbit Optimizaof the algorithm on 8 benchmark functions. Experimental results demonstrate that our improved fusion strategy has superior comprehensive performance over advanced optimization algorithms such as the Artificial Rabbit optimization, implying evident superiority and application potential of our strategy.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
石棉县| 汤阴县| 新竹市| 利川市| 秦皇岛市| 武汉市| 乌拉特后旗| 安国市| 平潭县| 华阴市| 静安区| 临泉县| 咸丰县| 通化市| 东乡族自治县| 五河县| 都江堰市| 张家口市| 敦煌市| 京山县| 志丹县| 蒙阴县| 奈曼旗| 尉氏县| 蓬安县| 韶山市| 普陀区| 新巴尔虎右旗| 延寿县| 铅山县| 根河市| 泰宁县| 东安县| 客服| 莱阳市| 北碚区| 瑞丽市| 横山县| 廉江市| 铜鼓县| 舒城县|