找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; 15th International C Ying Tan,Yuhui Shi Conference proceedings 2024 The Editor(s) (if applicable) and The A

[復(fù)制鏈接]
查看: 21097|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:22:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Swarm Intelligence
期刊簡(jiǎn)稱15th International C
影響因子2023Ying Tan,Yuhui Shi
視頻videohttp://file.papertrans.cn/168/167320/167320.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Swarm Intelligence; 15th International C Ying Tan,Yuhui Shi Conference proceedings 2024 The Editor(s) (if applicable) and The A
影響因子.This two-volume set LNCS 14788 and 14789 constitutes the refereed post-conference proceedings of the 15th International Conference on Advances in Swarm Intelligence, ICSI 2024, held in Xining, China, during August 23–26, 2024...The 74 revised full papers presented in these proceedings were carefully reviewed and selected from 156 submissions. The papers are organized in the following topical sections:..Part I - Particle swarm optimization; Swarm intelligence computing; Differential evolution; Evolutionary algorithms; Multi-agent reinforcement learning & Multi-objective optimization...Part II - Route planning problem; Machine learning; Detection and prediction; Classification; Edge computing; Modeling and optimization & Analysis of review..
Pindex Conference proceedings 2024
The information of publication is updating

書目名稱Advances in Swarm Intelligence影響因子(影響力)




書目名稱Advances in Swarm Intelligence影響因子(影響力)學(xué)科排名




書目名稱Advances in Swarm Intelligence網(wǎng)絡(luò)公開(kāi)度




書目名稱Advances in Swarm Intelligence網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Advances in Swarm Intelligence被引頻次




書目名稱Advances in Swarm Intelligence被引頻次學(xué)科排名




書目名稱Advances in Swarm Intelligence年度引用




書目名稱Advances in Swarm Intelligence年度引用學(xué)科排名




書目名稱Advances in Swarm Intelligence讀者反饋




書目名稱Advances in Swarm Intelligence讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:23:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:36:41 | 只看該作者
Schwimmkasten- und Druckluftgründungenlem and meet specific purposes. The current status of swarm intelligence on planning and scheduling tasks is discussed and the challenges of swarm intelligence and automated planning algorithms design are analyzed in this paper. Interpretability is the foundation of understanding problems’ propertie
地板
發(fā)表于 2025-3-22 06:28:00 | 只看該作者
Grundlagen des Maschinenfundamententwurfs CPP methods assume reliable global communication but there is only local communication in many real-world scenarios. The related studies on robot collaboration under local communication face issues of excessive meeting cost or lack of collaboration when applied to CPP tasks. This paper proposes a G
5#
發(fā)表于 2025-3-22 10:14:32 | 只看該作者
https://doi.org/10.1007/978-3-7091-8137-9o solve the above problem. Firstly, the problem is formulated as a multi-constrained optimization problem, incorporating constraints on drone performance and environmental conditions. Secondly, a hyper-heuristic algorithm based on Q-learning (HHBQL) is introduced, which utilizes Q-learning (QL) as a
6#
發(fā)表于 2025-3-22 14:40:30 | 只看該作者
7#
發(fā)表于 2025-3-22 17:54:30 | 只看該作者
8#
發(fā)表于 2025-3-23 01:02:13 | 只看該作者
Gründungsausbildung in Netzwerkenver pollution control. In this study, we focus on a typical river watershed in Nanjing, China. We collect and process historical monitoring data from multiple automated water quality stations within the basin. To predict water quality, we employ three time series models: Support Vector Machine (SVM)
9#
發(fā)表于 2025-3-23 04:59:41 | 只看該作者
Zum Gegenstand der Untersuchung, fact and imposes constraints on model design, training performance and accuracy. This paper introduces a fine-grained federated learning (FGFL) method to tackle resource heterogeneity. FGFL utilizes a configurable architecture search space in order to offer abundant architectures for various device
10#
發(fā)表于 2025-3-23 05:54:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 17:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙里县| 达孜县| 黄平县| 英山县| 嘉定区| 阿克陶县| 罗源县| 德保县| 花垣县| 沂源县| 平潭县| 西青区| 七台河市| 岳普湖县| 霞浦县| 承德市| 盐亭县| 宁海县| 莎车县| 永福县| 凤城市| 凤庆县| 吉林省| 新田县| 当雄县| 博客| 故城县| 梅州市| 天等县| 贵州省| 中西区| 大田县| 闽侯县| 金门县| 罗田县| 南乐县| 平湖市| 青龙| 华容县| 沈丘县| 永新县|