找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Partial Differential Equations and Control; The 2023 Conference Ka?s Ammari,Anna Doubova,Manuel González-Burgos Conference pro

[復制鏈接]
樓主: 水平
41#
發(fā)表于 2025-3-28 18:31:13 | 只看該作者
Observability and Control of Parabolic Equations on Networks Carleman inequality, we found that the observability of the entire network could be achieved under certain hypothesis about the position of the observation domain. The main difficulty we tackled, due to the existence of loops, was to avoid entering into a circular fallacy, notably in the constructi
42#
發(fā)表于 2025-3-28 22:05:23 | 只看該作者
43#
發(fā)表于 2025-3-28 23:14:27 | 只看該作者
44#
發(fā)表于 2025-3-29 05:39:04 | 只看該作者
Decoding the Kramers–Fokker–Planck Operator: An Overview. Math. Jussieu .(2), 675–711 (2022); Ben Said, Math. Methods Appl. Sci. .(2), 914–927 (2022)), that delve into the properties and compactness criteria for the resolvent of the Kramers–Fokker–Planck operator. By reviewing these works, we aim to gain insights into the fundamental aspects and analysis
45#
發(fā)表于 2025-3-29 09:43:31 | 只看該作者
46#
發(fā)表于 2025-3-29 13:54:33 | 只看該作者
Study of the Numerical Method for an Inverse Problem of a Simplified Intestinal Cryptl cells with microbiota-derived chemicals diffusing in the crypt from the gut lumen. The five types of cells considered in the original model were reduced in this work to three types of cells for simplifications of the inverse problem. The inverse problem consists of determining the shape of the sec
47#
發(fā)表于 2025-3-29 18:33:08 | 只看該作者
48#
發(fā)表于 2025-3-29 20:24:10 | 只看該作者
Central Nervous System Action on Rolling Balance Board Robust Stabilization: Computer Algebra and MIperty. The human stance on a rolling balance board is analyzed in the sagittal plane through a 2-degree-of-freedom mechanical model. Namely, the human body is modeled by a double-inverted pendulum which connects to the balance board through the ankle joint. The system is stabilized by the ankle torq
49#
發(fā)表于 2025-3-30 02:41:31 | 只看該作者
2297-0215 dvances in Partial Differential Equations and Control.?will be a valuable resource for both established researchers as well as more junior members of the community..978-3-031-62267-0978-3-031-62265-6Series ISSN 2297-0215 Series E-ISSN 2297-024X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 12:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
乃东县| 台中县| 阿鲁科尔沁旗| 东兰县| 班玛县| 晋中市| 施甸县| 陈巴尔虎旗| 德保县| 十堰市| 云和县| 临沂市| 博乐市| 南通市| 南江县| 吉木乃县| 泸溪县| 彰化县| 山西省| 苍溪县| 景泰县| 乡宁县| 丽江市| 拉萨市| 汝阳县| 永兴县| 凤山县| 荥阳市| 仪征市| 荥阳市| 镇江市| 兴海县| 盱眙县| 三都| 洪洞县| 大荔县| 稻城县| 吉首市| 和林格尔县| 微山县| 行唐县|