找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Multimodal Information Retrieval and Generation; Man Luo,Tejas Gokhale,Chitta Baral Book 2025 The Editor(s) (if applicable) an

[復(fù)制鏈接]
查看: 46550|回復(fù): 37
樓主
發(fā)表于 2025-3-21 17:47:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Multimodal Information Retrieval and Generation
影響因子2023Man Luo,Tejas Gokhale,Chitta Baral
視頻videohttp://file.papertrans.cn/168/167290/167290.mp4
發(fā)行地址Provides a comprehensive overview of the state-of-the-art in multi-modal architectures and representation learning.Presents state-of-the-art techniques including neural models based on transformers an
學(xué)科分類Synthesis Lectures on Computer Vision
圖書封面Titlebook: Advances in Multimodal Information Retrieval and Generation;  Man Luo,Tejas Gokhale,Chitta Baral Book 2025 The Editor(s) (if applicable) an
影響因子.This book provides an extensive examination of state-of-the-art methods in multimodal retrieval, generation, and the pioneering field of retrieval-augmented generation.? The work is rooted in the domain of Transformer-based models, exploring the complexities of blending and interpreting the intricate connections between text and images.? The authors present cutting-edge theories, methodologies, and frameworks dedicated to multimodal retrieval and generation, aiming to furnish readers with a comprehensive understanding of the current state and future prospects of multimodal AI.? As such, the book is a crucial resource for anyone interested in delving into the intricacies of multimodal retrieval and generation.? Serving as a bridge to mastering and leveraging advanced AI technologies in this field, the book is designed for students, researchers, practitioners, and AI aficionados alike, offering the tools needed to expand the horizons of what can be achieved in multimodal artificial intelligence..
Pindex Book 2025
The information of publication is updating

書目名稱Advances in Multimodal Information Retrieval and Generation影響因子(影響力)




書目名稱Advances in Multimodal Information Retrieval and Generation影響因子(影響力)學(xué)科排名




書目名稱Advances in Multimodal Information Retrieval and Generation網(wǎng)絡(luò)公開度




書目名稱Advances in Multimodal Information Retrieval and Generation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Multimodal Information Retrieval and Generation被引頻次




書目名稱Advances in Multimodal Information Retrieval and Generation被引頻次學(xué)科排名




書目名稱Advances in Multimodal Information Retrieval and Generation年度引用




書目名稱Advances in Multimodal Information Retrieval and Generation年度引用學(xué)科排名




書目名稱Advances in Multimodal Information Retrieval and Generation讀者反饋




書目名稱Advances in Multimodal Information Retrieval and Generation讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:23:11 | 只看該作者
978-3-031-57818-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
板凳
發(fā)表于 2025-3-22 02:26:02 | 只看該作者
Man Luo,Tejas Gokhale,Chitta BaralProvides a comprehensive overview of the state-of-the-art in multi-modal architectures and representation learning.Presents state-of-the-art techniques including neural models based on transformers an
地板
發(fā)表于 2025-3-22 04:35:51 | 只看該作者
Synthesis Lectures on Computer Visionhttp://image.papertrans.cn/b/image/167290.jpg
5#
發(fā)表于 2025-3-22 09:17:58 | 只看該作者
https://doi.org/10.1007/978-3-8351-9208-9In this chapter, we will learn about the modeling and learning techniques that drive multimodal applications. We will focus specifically on the recent advances in transformer-based modeling for natural language understanding, and image understanding, and how these approaches connect for jointly understanding combinations of language and image.
6#
發(fā)表于 2025-3-22 13:25:50 | 只看該作者
7#
發(fā)表于 2025-3-22 17:28:54 | 只看該作者
8#
發(fā)表于 2025-3-23 00:32:58 | 只看該作者
https://doi.org/10.1007/978-3-8351-9208-9, limited to a single type of data, often fall short of capturing the complexity and richness of human communication and experience. In contrast, multimodal retrieval systems leverage the complementary nature of different data types to provide more accurate, context-aware, and user-centric search re
9#
發(fā)表于 2025-3-23 03:08:03 | 只看該作者
https://doi.org/10.1007/978-3-8351-9208-9t. With the proliferation of multimedia platforms and data sources, we are constantly bombarded with a rich variety of images, videos, audio, and text. This vast array of heterogeneous data poses new challenges and opportunities for the field of Information Retrieval (IR). To address these challenge
10#
發(fā)表于 2025-3-23 07:14:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 16:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上高县| 凤庆县| 孟连| 仁寿县| 文山县| 韶山市| 长宁县| 石家庄市| 印江| 灵武市| 鄂温| 静宁县| 紫阳县| 莎车县| 临沧市| 渑池县| 开原市| 南溪县| 石台县| 前郭尔| 龙南县| 介休市| 镇雄县| 东阿县| 德令哈市| 台山市| 方山县| 平果县| 白沙| 体育| 临湘市| 青海省| 宜兰市| 滁州市| 南岸区| 新晃| 西和县| 巴马| 玉门市| 措勤县| 镇沅|