找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology – CRYPTO 2024; 44th Annual Internat Leonid Reyzin,Douglas Stebila Conference proceedings 2024 International Associat

[復制鏈接]
樓主: 搭話
11#
發(fā)表于 2025-3-23 11:19:12 | 只看該作者
12#
發(fā)表于 2025-3-23 16:54:39 | 只看該作者
13#
發(fā)表于 2025-3-23 18:16:05 | 只看該作者
14#
發(fā)表于 2025-3-23 23:42:39 | 只看該作者
Polynomial Commitments from?Lattices: Post-quantum Security, Fast Verification and?Transparent Setupcurity of the aforementioned lattice constructions against quantum adversaries was never formally discussed..In this work, we bridge the gap and propose the first (asymptotically and concretely) efficient lattice-based polynomial commitment with transparent setup and post-quantum security. Our inter
15#
發(fā)表于 2025-3-24 06:12:13 | 只看該作者
16#
發(fā)表于 2025-3-24 07:21:58 | 只看該作者
17#
發(fā)表于 2025-3-24 13:09:47 | 只看該作者
HyperNova: Recursive Arguments for?Customizable Constraint Systemsenting the instruction invoked by the program step (“a la carte” cost profile). Third, we show how to achieve zero-knowledge for “free” and . the need to employ . SNARKs: we use a folding scheme to “randomize” IVC proofs. This highlights a new application of folding schemes. Fourth, we show how to e
18#
發(fā)表于 2025-3-24 14:57:27 | 只看該作者
Concretely Efficient Lattice-Based Polynomial Commitment from?Standard Assumptionsown (CRYPTO 2023), a recent code-based construction, our scheme offers comparable performance across all metrics. Furthermore, its proof size is approximately 4.1 times smaller than SLAP (EUROCRYPT 2024), a recent lattice-based construction.
19#
發(fā)表于 2025-3-24 21:16:24 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:12 | 只看該作者
Information aus kybernetischer Sicht,domizable one way functions (in addition?to obfuscation). Such functions are only currently known to be realizable?from assumptions such as discrete log or factoring that are known to not?hold in a quantum setting.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
广宗县| 隆德县| 青岛市| 正阳县| 堆龙德庆县| 三亚市| 成都市| 丰镇市| 太保市| 民权县| 维西| 柏乡县| 凤冈县| 扶余县| 拉孜县| 鸡东县| 筠连县| 白城市| 泸溪县| 华宁县| 昔阳县| 眉山市| 抚宁县| 建德市| 长顺县| 迁安市| 铜陵市| 吴川市| 晴隆县| 九寨沟县| 彰化县| 彰武县| 罗田县| 原阳县| 博爱县| 蒙城县| 普宁市| 沙坪坝区| 循化| 威信县| 弥勒县|