找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology – CRYPTO 2024; 44th Annual Internat Leonid Reyzin,Douglas Stebila Conference proceedings 2024 International Associat

[復(fù)制鏈接]
樓主: 搭話
11#
發(fā)表于 2025-3-23 11:19:12 | 只看該作者
12#
發(fā)表于 2025-3-23 16:54:39 | 只看該作者
13#
發(fā)表于 2025-3-23 18:16:05 | 只看該作者
14#
發(fā)表于 2025-3-23 23:42:39 | 只看該作者
Polynomial Commitments from?Lattices: Post-quantum Security, Fast Verification and?Transparent Setupcurity of the aforementioned lattice constructions against quantum adversaries was never formally discussed..In this work, we bridge the gap and propose the first (asymptotically and concretely) efficient lattice-based polynomial commitment with transparent setup and post-quantum security. Our inter
15#
發(fā)表于 2025-3-24 06:12:13 | 只看該作者
16#
發(fā)表于 2025-3-24 07:21:58 | 只看該作者
17#
發(fā)表于 2025-3-24 13:09:47 | 只看該作者
HyperNova: Recursive Arguments for?Customizable Constraint Systemsenting the instruction invoked by the program step (“a la carte” cost profile). Third, we show how to achieve zero-knowledge for “free” and . the need to employ . SNARKs: we use a folding scheme to “randomize” IVC proofs. This highlights a new application of folding schemes. Fourth, we show how to e
18#
發(fā)表于 2025-3-24 14:57:27 | 只看該作者
Concretely Efficient Lattice-Based Polynomial Commitment from?Standard Assumptionsown (CRYPTO 2023), a recent code-based construction, our scheme offers comparable performance across all metrics. Furthermore, its proof size is approximately 4.1 times smaller than SLAP (EUROCRYPT 2024), a recent lattice-based construction.
19#
發(fā)表于 2025-3-24 21:16:24 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:12 | 只看該作者
Information aus kybernetischer Sicht,domizable one way functions (in addition?to obfuscation). Such functions are only currently known to be realizable?from assumptions such as discrete log or factoring that are known to not?hold in a quantum setting.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴和县| 东明县| 徐汇区| 宁河县| 霍邱县| 河北省| 元氏县| 博爱县| 北海市| 屏东县| 沂南县| 团风县| 屏南县| 名山县| 时尚| 玛纳斯县| 潞城市| 卢龙县| 通江县| 松阳县| 辛集市| 荔浦县| 宝应县| 棋牌| 个旧市| 潮安县| 沙河市| 徐闻县| 昔阳县| 三门峡市| 大连市| 万山特区| 商丘市| 元谋县| 三河市| 朝阳市| 嘉定区| 乌兰浩特市| 兴安盟| 洪湖市| 平顶山市|