找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Conceptual Modeling; ER 2024 Workshops, A Motoshi Saeki,Leah Wong,José F. Reyes Román Conference proceedings 2025 The Editor(s)

[復(fù)制鏈接]
樓主: 底的根除
31#
發(fā)表于 2025-3-26 22:29:18 | 只看該作者
32#
發(fā)表于 2025-3-27 04:48:23 | 只看該作者
33#
發(fā)表于 2025-3-27 05:33:56 | 只看該作者
34#
發(fā)表于 2025-3-27 10:39:11 | 只看該作者
35#
發(fā)表于 2025-3-27 17:03:58 | 只看該作者
Empirical Case Study of AI Service and Application for People with Disabilities (Invited Paper)nce but also a crucial element in enabling social integration. This paper studies various cases where AI technology enhances the quality of life for individuals with disabilities. It analyzes the potential of AGI, the effectiveness of currently available AI services and applications, and discusses t
36#
發(fā)表于 2025-3-27 21:30:17 | 只看該作者
A Methodological Framework for Designing Human-Centered Artificial Intelligence Servicesscience is increasingly pivotal for enhancing service sector performance. This paper introduces a methodological framework for HCAI service design, called HCAI-SD framework, a novel approach that incorporates HCAI principles into service science to facilitate the design of HCAI services. The framewo
37#
發(fā)表于 2025-3-27 22:06:48 | 只看該作者
38#
發(fā)表于 2025-3-28 03:19:19 | 只看該作者
GRASPER: Leveraging Knowledge Graphs for?Predictive Supply Chain Analyticsge disruptions often remain undetected, propagate in the network and pose significant challenges to industries reliant on component-based products such as sensors, engines, and electronics. We introduce GRASPER, an AI-based approach for detecting hidden problems in supply chains through graph-theore
39#
發(fā)表于 2025-3-28 08:03:43 | 只看該作者
An MLOps Framework to?Data-Driven Modelling of?Digital Twins with?an?Application to?Virtual Test Riguickly become outdated. Streamlined model update is still a major challenge. There is a need to establish methods and techniques for managing data-driven digital twins throughout their entire life cycle. Machine learning operations (MLOps) recently emerged as an effective means to foster the integra
40#
發(fā)表于 2025-3-28 13:24:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肇源县| 崇礼县| 新竹县| 五峰| 保靖县| 平昌县| 浏阳市| 临沧市| 昭苏县| 盘山县| 东港市| 霍城县| 沁水县| 乳山市| 化州市| 富锦市| 岳阳县| 娄底市| 卓尼县| 嫩江县| 梨树县| 浏阳市| 双牌县| 翁源县| 珠海市| 连云港市| 临沭县| 新乐市| 永宁县| 绥江县| 资兴市| 襄汾县| 兴海县| 新蔡县| 应用必备| 永登县| 鹿邑县| 陕西省| 高淳县| 丹巴县| 乌苏市|