找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Artificial Intelligence; 20th Conference of t Amparo Alonso-Betanzos,Bertha Guijarro-Berdi?as,Al Conference proceedings 2024 Th

[復(fù)制鏈接]
樓主: 毛發(fā)
41#
發(fā)表于 2025-3-28 16:37:33 | 只看該作者
42#
發(fā)表于 2025-3-28 21:24:09 | 只看該作者
43#
發(fā)表于 2025-3-28 23:04:20 | 只看該作者
,Predicting Parkinson’s Disease Progression: Analyzing Prodromal Stages Through Machine Learning, data, and Logistic Regression (balanced) when adding thicknesses and volumes of MRI data. The metrics were improve in the second case (AUC ROC of 0.84). Significant predictors include olfactory dysfunction, motor symptoms, psychomotor speed, and third ventricle dilation.
44#
發(fā)表于 2025-3-29 05:18:23 | 只看該作者
45#
發(fā)表于 2025-3-29 07:30:41 | 只看該作者
46#
發(fā)表于 2025-3-29 11:51:16 | 只看該作者
47#
發(fā)表于 2025-3-29 18:40:16 | 只看該作者
,An Architecture Towards Building a?Reliable Suicide Information Chatbot, or friends of people who have suicidal ideation can be a valuable resource. This information can be provided by means of chatbot tools; however, the reliability and topicality of the chatbot’s answers should be ensured. In this work, we present an architecture to build a chatbot with the aim of pro
48#
發(fā)表于 2025-3-29 22:01:18 | 只看該作者
49#
發(fā)表于 2025-3-30 00:58:02 | 只看該作者
,O-Hydra: A Hybrid Convolutional and?Dictionary-Based Approach to?Time Series Ordinal Classificationus real-world problems and the possibility to obtain more consistent prediction than nominal Time Series Classification (TSC). Specifically, TSOC involves time series data along with an ordinal categorical output. That is, there is a natural order relationship among the labels associated with the ti
50#
發(fā)表于 2025-3-30 07:55:15 | 只看該作者
,Predicting Parkinson’s Disease Progression: Analyzing Prodromal Stages Through Machine Learning,s to discriminate between prodromals that phenoconverted to PD in 7 years to those that did not. Through feature selection, the system identified key first visit predictors of PD phenoconversion, encompassing demographic, clinical, and structural magnetic resonance imaging (MRI) data. Employing seve
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德庆县| 孟连| 定边县| 大埔区| 漾濞| 松原市| 林周县| 伊川县| 灵川县| 阳泉市| 法库县| 昌江| 尚志市| 加查县| 桐柏县| 元阳县| 武川县| 平远县| 甘泉县| 江西省| 随州市| 恩平市| 镇坪县| 金坛市| 宜兰市| 家居| 顺昌县| 灯塔市| 宁河县| 望江县| 富平县| 攀枝花市| 漠河县| 萍乡市| 东山县| 荔波县| 琼结县| 资中县| 望江县| 正宁县| 大石桥市|