找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Artificial Intelligence; 20th Conference of t Amparo Alonso-Betanzos,Bertha Guijarro-Berdi?as,Al Conference proceedings 2024 Th

[復(fù)制鏈接]
樓主: 毛發(fā)
41#
發(fā)表于 2025-3-28 16:37:33 | 只看該作者
42#
發(fā)表于 2025-3-28 21:24:09 | 只看該作者
43#
發(fā)表于 2025-3-28 23:04:20 | 只看該作者
,Predicting Parkinson’s Disease Progression: Analyzing Prodromal Stages Through Machine Learning, data, and Logistic Regression (balanced) when adding thicknesses and volumes of MRI data. The metrics were improve in the second case (AUC ROC of 0.84). Significant predictors include olfactory dysfunction, motor symptoms, psychomotor speed, and third ventricle dilation.
44#
發(fā)表于 2025-3-29 05:18:23 | 只看該作者
45#
發(fā)表于 2025-3-29 07:30:41 | 只看該作者
46#
發(fā)表于 2025-3-29 11:51:16 | 只看該作者
47#
發(fā)表于 2025-3-29 18:40:16 | 只看該作者
,An Architecture Towards Building a?Reliable Suicide Information Chatbot, or friends of people who have suicidal ideation can be a valuable resource. This information can be provided by means of chatbot tools; however, the reliability and topicality of the chatbot’s answers should be ensured. In this work, we present an architecture to build a chatbot with the aim of pro
48#
發(fā)表于 2025-3-29 22:01:18 | 只看該作者
49#
發(fā)表于 2025-3-30 00:58:02 | 只看該作者
,O-Hydra: A Hybrid Convolutional and?Dictionary-Based Approach to?Time Series Ordinal Classificationus real-world problems and the possibility to obtain more consistent prediction than nominal Time Series Classification (TSC). Specifically, TSOC involves time series data along with an ordinal categorical output. That is, there is a natural order relationship among the labels associated with the ti
50#
發(fā)表于 2025-3-30 07:55:15 | 只看該作者
,Predicting Parkinson’s Disease Progression: Analyzing Prodromal Stages Through Machine Learning,s to discriminate between prodromals that phenoconverted to PD in 7 years to those that did not. Through feature selection, the system identified key first visit predictors of PD phenoconversion, encompassing demographic, clinical, and structural magnetic resonance imaging (MRI) data. Employing seve
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临湘市| 常山县| 延川县| 团风县| 霍城县| 伊宁市| 西峡县| 岐山县| 兴化市| 沁阳市| 织金县| 饶河县| 石泉县| 宜兴市| 清流县| 汕头市| 东港市| 阳信县| 蒙山县| 缙云县| 平顶山市| 恩施市| 宁化县| 密山市| 和林格尔县| 延寿县| 东宁县| 黄陵县| 彭泽县| 大埔区| 都匀市| 孟津县| 清河县| 韩城市| 安仁县| 灵石县| 潞西市| 定襄县| 平邑县| 托克逊县| 汪清县|