找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Artificial Intelligence; 20th Conference of t Amparo Alonso-Betanzos,Bertha Guijarro-Berdi?as,Al Conference proceedings 2024 Th

[復(fù)制鏈接]
樓主: 毛發(fā)
41#
發(fā)表于 2025-3-28 16:37:33 | 只看該作者
42#
發(fā)表于 2025-3-28 21:24:09 | 只看該作者
43#
發(fā)表于 2025-3-28 23:04:20 | 只看該作者
,Predicting Parkinson’s Disease Progression: Analyzing Prodromal Stages Through Machine Learning, data, and Logistic Regression (balanced) when adding thicknesses and volumes of MRI data. The metrics were improve in the second case (AUC ROC of 0.84). Significant predictors include olfactory dysfunction, motor symptoms, psychomotor speed, and third ventricle dilation.
44#
發(fā)表于 2025-3-29 05:18:23 | 只看該作者
45#
發(fā)表于 2025-3-29 07:30:41 | 只看該作者
46#
發(fā)表于 2025-3-29 11:51:16 | 只看該作者
47#
發(fā)表于 2025-3-29 18:40:16 | 只看該作者
,An Architecture Towards Building a?Reliable Suicide Information Chatbot, or friends of people who have suicidal ideation can be a valuable resource. This information can be provided by means of chatbot tools; however, the reliability and topicality of the chatbot’s answers should be ensured. In this work, we present an architecture to build a chatbot with the aim of pro
48#
發(fā)表于 2025-3-29 22:01:18 | 只看該作者
49#
發(fā)表于 2025-3-30 00:58:02 | 只看該作者
,O-Hydra: A Hybrid Convolutional and?Dictionary-Based Approach to?Time Series Ordinal Classificationus real-world problems and the possibility to obtain more consistent prediction than nominal Time Series Classification (TSC). Specifically, TSOC involves time series data along with an ordinal categorical output. That is, there is a natural order relationship among the labels associated with the ti
50#
發(fā)表于 2025-3-30 07:55:15 | 只看該作者
,Predicting Parkinson’s Disease Progression: Analyzing Prodromal Stages Through Machine Learning,s to discriminate between prodromals that phenoconverted to PD in 7 years to those that did not. Through feature selection, the system identified key first visit predictors of PD phenoconversion, encompassing demographic, clinical, and structural magnetic resonance imaging (MRI) data. Employing seve
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米易县| 永登县| 淮南市| 井陉县| 潮州市| 黄冈市| 奉贤区| 河源市| 广南县| 普宁市| 饶平县| 虹口区| 内乡县| 邵武市| 峨边| 宽甸| 泽普县| 巴青县| 云浮市| 泰州市| 合作市| 安仁县| 阜康市| 尉氏县| 三河市| 佛冈县| 台东市| 乐陵市| 扶风县| 武宁县| 延川县| 乌鲁木齐市| 响水县| 怀远县| 临沂市| 鹰潭市| 旌德县| 南康市| 阿拉善左旗| 庄河市| 天气|