找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Network Technologies and Intelligent Computing; Third International Anshul Verma,Pradeepika Verma,Isaac Woungang Conference proce

[復(fù)制鏈接]
樓主: 故障
11#
發(fā)表于 2025-3-23 10:21:48 | 只看該作者
12#
發(fā)表于 2025-3-23 17:20:37 | 只看該作者
Strukturpr?gende Gestaltungsprinzipien on improving the traffic sign areas in tough photos. Our technique is tested using the GTSRB dataset, which features traffic recordings collected under various CCs. Using the German Traffic Sign Recognition Benchmark (GTSRB) dataset, the reported technique attained an accuracy of 98.62 In addition,
13#
發(fā)表于 2025-3-23 22:00:34 | 只看該作者
https://doi.org/10.1007/978-3-662-07594-4thm inspired by the method of chromatographic separation of chemical substances. This method is widely and successfully used in analytical chemistry. The article presents the results of calculations for sample data sets and discusses issues related to the properties of the defined algorithm, which c
14#
發(fā)表于 2025-3-24 01:55:17 | 只看該作者
15#
發(fā)表于 2025-3-24 06:22:52 | 只看該作者
Enhanced Residual Network Framework for Robust Classification of Noisy Lung Cancer CT Images this effort will methodically assess different filtering techniques throughout a range of noise densities, from 5% to 50%. The goal of this effort is to identify lung cancer by using machine learning techniques on CT scan pictures, which will enable early and accurate cancer detection. The suggeste
16#
發(fā)表于 2025-3-24 10:20:20 | 只看該作者
17#
發(fā)表于 2025-3-24 12:17:23 | 只看該作者
18#
發(fā)表于 2025-3-24 17:48:23 | 只看該作者
Detection of?Lung Diseases Using Deep Transfer Learning-Based Convolution Neural Networksur models, the Detection performance of MobileNet and ResNet18 is quite encouraging compared to DenseNet121 and GoogLeNet. This approach could revolutionize the early detection and treatment of lung diseases, thereby enhancing patient outcomes and healthcare efficiency by providing insights into the
19#
發(fā)表于 2025-3-24 22:58:19 | 只看該作者
DG-GAN: A Deep Neural Network for?Real-World Anomaly Detection in?Surveillance Videosective functions. To address these challenges, we present a novel approach called the Dual Generator-based Generative Adversarial Network (DG-GAN). This network comprises two distinct components: a temporal generator and an image generator. The former accepts a single input in the form of a latent v
20#
發(fā)表于 2025-3-25 01:51:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同德县| 峨眉山市| 浮山县| 富蕴县| 木兰县| 绥宁县| 盈江县| 根河市| 宁德市| 伊宁市| 津南区| 本溪市| 苗栗县| 罗平县| 钦州市| 察隅县| 德江县| 保亭| 开江县| 洛隆县| 沾化县| 确山县| 武宣县| 德化县| 宁晋县| 潼南县| 龙江县| 衡阳县| 庆云县| 贡觉县| 抚宁县| 武宁县| 汝城县| 察雅县| 新平| 文安县| 伊金霍洛旗| 通许县| 波密县| 镇原县| 天水市|