找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Zhanjun Si,Wei Chen Conference proceedings

[復制鏈接]
樓主: graphic
11#
發(fā)表于 2025-3-23 12:02:27 | 只看該作者
,Regelungstechnische Verh?ltnisse,ng support for the prevention and treatment of echinococcosis. Echinococcosis, a zoonotic disease, is caused by the larval stage of tapeworms. It is of significant importance in terms of prevention, control strategies, and reducing the impact of the disease. In recent years, the study of RNA, genes,
12#
發(fā)表于 2025-3-23 14:53:02 | 只看該作者
,Wahrnehmen, Beschreiben und Erkl?ren,till difficult to accurately handle curling games, because the continuous state and action space of curling lead to the loss of position information during discretization. In this paper, we have designed a new curling agent based on curling rules. A Curling Location Extraction Policy-Value Network (
13#
發(fā)表于 2025-3-23 19:26:35 | 只看該作者
14#
發(fā)表于 2025-3-24 01:37:33 | 只看該作者
Logistiknetzwerkplanung und Transportketten,tly outputting denormalized results may lead to over-smooth predictions. These denormalized predictions suffer from the bias of amplitude scale and occasionally deviate far from actual ground truth. To alleviate this issue, we propose a novel time series forecasting model, Friformer, which compensat
15#
發(fā)表于 2025-3-24 05:02:37 | 只看該作者
,L?sungen zu den übungsaufgaben,g models based on deep learning tend to encounter issues during the feature extraction phase, such as disappearing features, substantial computational loads in feature fusion, and there exist disparities when fusing features of different levels, resulting in models with low robustness. Therefore, th
16#
發(fā)表于 2025-3-24 07:29:24 | 只看該作者
17#
發(fā)表于 2025-3-24 14:00:59 | 只看該作者
https://doi.org/10.1007/978-3-658-18593-0ments across various domains. However, most deep learning models often fail to consider the multi-resolution characteristics of time series data, which may lead to information loss issues. In this paper, we explore the utilization of information from raw time series data at various resolutions and p
18#
發(fā)表于 2025-3-24 18:50:40 | 只看該作者
https://doi.org/10.1007/978-3-658-10746-8se challenges, we propose a Spatio-Temporal Feature Fusion Model based on Transformer and a Global Feature Mining Module. The aim is to overcome the high resource consumption issue of the Transformer model when processing large-scale traffic data, as well as its potential shortcomings in capturing s
19#
發(fā)表于 2025-3-24 21:29:21 | 只看該作者
https://doi.org/10.1007/978-3-658-10746-8nificantly impact the recommendation performance of online courses. To address this problem, this paper proposes a feature decomposition multi-task online course recommendation model that integrates the multi-head self-attention mechanism and autoencoder (FDMA). This model adopts a feature decomposi
20#
發(fā)表于 2025-3-25 00:19:05 | 只看該作者
https://doi.org/10.1007/978-3-658-10746-8ssible time, this paper proposes an improved evacuation model. We analyze the crowd evacuation efficiency of different classroom layouts based on this model and propose a layout strategy. First, this paper improves the static field calculation method of the evacuation model and proposes a fast stati
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 18:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
普兰店市| 民县| 白城市| 鸡泽县| 车险| 营山县| 成安县| 信宜市| 南乐县| 开鲁县| 德昌县| 徐州市| 勃利县| 陇南市| 攀枝花市| 抚松县| 通海县| 广灵县| 扶绥县| 克什克腾旗| 平原县| 渭源县| 平潭县| 镇原县| 搜索| 新河县| 京山县| 乌恰县| 合肥市| 若尔盖县| 皮山县| 景德镇市| 静宁县| 定结县| 外汇| 交城县| 郎溪县| 和平县| 翁源县| 琼结县| 夏邑县|