找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Wei Chen,Yijie Pan Conference proceedings

[復(fù)制鏈接]
樓主: fundoplication
41#
發(fā)表于 2025-3-28 15:59:03 | 只看該作者
Die Aufgaben der Kostenrechnung,etter focus on and utilize feature information at different scales, and achieves effective skip connections. The proposed model is evaluated on two different medical image segmentation datasets, and the results show that our model has achieved better performance in terms of accuracy.
42#
發(fā)表于 2025-3-28 19:30:43 | 只看該作者
43#
發(fā)表于 2025-3-29 02:56:30 | 只看該作者
https://doi.org/10.1007/978-3-322-84098-1to recover the secret image. The experimental outcomes indicate that the proposed model increases the visual effect of images, with cover images PSNR and SSIM reaching 40.36 dB and 98.18%, respectively. Therefore, the model can effectively hide images during information transmission and prevent atta
44#
發(fā)表于 2025-3-29 05:37:28 | 只看該作者
45#
發(fā)表于 2025-3-29 08:08:01 | 只看該作者
Grundlagen der Lebensmittelmikrobiologie, reconstruction is performed using an inverse wavelet transformation. Experimental results demonstrate that the proposed algorithm not only effectively suppresses complex noise in images and enhances the contrast of clinical pulmonary CT images but also preserves the natural appearance of images an
46#
發(fā)表于 2025-3-29 12:23:47 | 只看該作者
Grundlagen der Lebensmittelmikrobiologien the first stage, we introduce a novel two-decoder architecture with collaborative learning to preliminarily decouple blur features and mitigate the learning complexity of the network. In the second stage, we propose a coupled learning module (CLM) and a feature enhancement block (FEB) to constrain
47#
發(fā)表于 2025-3-29 18:49:35 | 只看該作者
48#
發(fā)表于 2025-3-29 22:17:18 | 只看該作者
49#
發(fā)表于 2025-3-30 01:47:51 | 只看該作者
50#
發(fā)表于 2025-3-30 08:03:26 | 只看該作者
MAPNet: A Multi-scale Attention Pooling Network for Ultrasound Medical Image Segmentationetter focus on and utilize feature information at different scales, and achieves effective skip connections. The proposed model is evaluated on two different medical image segmentation datasets, and the results show that our model has achieved better performance in terms of accuracy.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄江县| 无锡市| 宜丰县| 沁水县| 阳山县| 宁海县| 台州市| 娱乐| 合阳县| 蒙自县| 靖西县| 武宣县| 措勤县| 六盘水市| 揭西县| 金门县| 萍乡市| 霸州市| 军事| 漯河市| 潍坊市| 成安县| 九寨沟县| 三明市| 绿春县| 米林县| 五台县| 辰溪县| 友谊县| 新兴县| 张家川| 静宁县| 高淳县| 西丰县| 双牌县| 汶上县| 富源县| 贺州市| 万宁市| 南昌市| 林口县|