找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Wei Chen,Yijie Pan Conference proceedings

[復(fù)制鏈接]
樓主: fundoplication
11#
發(fā)表于 2025-3-23 11:29:00 | 只看該作者
A Multimodal Fake News Detection Model with Self-supervised Unimodal Label Generations and often ignore the semantic differences between single modalities, which limited the performance. To deal with the above problem, this paper proposes a multimodal fake news detection model (AFUG), which fully pays attention to the semantic correlation between each modal information by designing
12#
發(fā)表于 2025-3-23 13:58:38 | 只看該作者
13#
發(fā)表于 2025-3-23 20:31:08 | 只看該作者
14#
發(fā)表于 2025-3-23 23:32:13 | 只看該作者
Palmprint Recognition Using SC-LNMF Model in Gabor Domainmain of 2D-Gabor wavelet is mainly discussed in this paper. And to extract more texture features of palmprint images, a modified 2D-Gabor kernel function is also used here. It is known that the common LNMF method can successfully extract an image’s local feature, but it does not consider the sparse
15#
發(fā)表于 2025-3-24 04:06:56 | 只看該作者
SkinDiff: A Novel Data Synthesis Method Based on Latent Diffusion Model for Skin Lesion Segmentationng manual annotation. To address this issue, this paper proposes SkinDiff, a novel framework for training data expansion. Derived from the Latent Diffusion Model, we utilize two steps, the Generating Foreground and the Outpainting Background techniques, to synthesize high-fidelity labeled image samp
16#
發(fā)表于 2025-3-24 09:12:25 | 只看該作者
17#
發(fā)表于 2025-3-24 11:35:15 | 只看該作者
Context-Aware Relative Distinctive Feature Learning for Person Re-identificationtion tasks. Predominantly, current research concentrates on two aspects: fine-grained feature learning and hard example mining. However, these approaches present noticeable shortcomings. The method of fine-grained feature learning does not sufficiently account for the relativity of distinct features
18#
發(fā)表于 2025-3-24 15:12:35 | 只看該作者
19#
發(fā)表于 2025-3-24 20:02:27 | 只看該作者
20#
發(fā)表于 2025-3-25 01:40:14 | 只看該作者
Das Einzelelektron im Kristall,d crack segmentation network that insert a SER at each scale of the encoder and decoder. Finally, by comparing proposed model with six established segmentation algorithms on two public crack datasets, DeepCrack and MSCI, our model achieves higher segmentation accuracy with extremely low parameters and FLOPs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
读书| 灵台县| 浦县| 涞源县| 文成县| 江源县| 泾源县| 唐山市| 罗源县| 周至县| 周宁县| 大石桥市| 土默特右旗| 鹤峰县| 内江市| 庆城县| 宜春市| 安化县| 万州区| 慈利县| 麻栗坡县| 雷山县| 安新县| 九台市| 泉州市| 吴桥县| 汽车| 和平县| 师宗县| 榕江县| 耿马| 泾源县| 咸宁市| 启东市| 隆化县| 泽库县| 永德县| 伽师县| 大方县| 沅江市| 武冈市|