找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Xiankun Zhang,Jiayang Guo Conference proce

[復(fù)制鏈接]
樓主: CURD
31#
發(fā)表于 2025-3-26 21:48:47 | 只看該作者
Depth-NeuS: Neural Implicit Surfaces Learning for Multi-view Reconstruction Based on Depth Information optimization. Additionally, we integrate photometric loss and geometric loss into loss function as geometric consistency loss to achieve geometric constraints. Empirical experiments have showcased the superior performance of Depth-NeuS over existing technologies across various scenarios. Moreover
32#
發(fā)表于 2025-3-27 03:16:00 | 只看該作者
33#
發(fā)表于 2025-3-27 06:31:41 | 只看該作者
Boosting Robustness of Silhouette-Based Gait Recognition Against Adversarial Attacksnhance edge information in images. The objective is to compel deep neural networks to focus more on semantic information in gait silhouette images and reduce feature deviations induced by adversarial perturbations. The method can significantly improve the adversarial robustness of silhouette-based g
34#
發(fā)表于 2025-3-27 11:56:53 | 只看該作者
35#
發(fā)表于 2025-3-27 15:16:49 | 只看該作者
36#
發(fā)表于 2025-3-27 18:49:44 | 只看該作者
Sparse Discriminant Graph Embedding for Feature Extractiongonal constraint and a sparse constraint simultaneously, ensuring the preservation of key information from the original data while enhancing robustness against noise. Extensive experiments on four real-world databases demonstrate the competitiveness of SDGE against state-of-the-art feature extractio
37#
發(fā)表于 2025-3-27 22:31:43 | 只看該作者
A Multi-Scale Additive Enhanced Network for Remote Sensing Scene Classificationting the problem of high inter class similarity. A Multi-Scale Additive Enhanced Network (MSAENet) is proposed based on MSAE Block and Bridging Residual Module (BRM) and is validated on two datasets, WHU-SIRI and AID. Based on experimental data, the classification accuracy of MSAENet is better than
38#
發(fā)表于 2025-3-28 02:12:54 | 只看該作者
SeWi: A Framework Enhancing CSI-Based Human Activity Recognitionifferent models as the basic models for SeWi. We also analyze the effective range of hyperparameters for this segmentation method. The results indicate that SeWi exhibits varying degrees of improvement for different models. Of particular note, using ResNet18 as the basic model for SeWi, the accuracy
39#
發(fā)表于 2025-3-28 09:55:54 | 只看該作者
40#
發(fā)表于 2025-3-28 12:42:51 | 只看該作者
Research on Hidden Mind-Wandering Detection Algorithm for Online Classroom Based on Temporal Analysiorithm can quickly and effectively detect students’ distraction phenomena, including daydreaming, distraction, and hidden activities like using mobile phones in blind spots of the camera’s visual capture. This research is significant for helping teachers evaluate students’ performance in online clas
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郑州市| 南华县| 漳州市| 大余县| 怀远县| 内乡县| 华坪县| 奉贤区| 江津市| 陇川县| 台湾省| 晋城| 海宁市| 塔河县| 大姚县| 清水河县| 新巴尔虎右旗| 兴山县| 申扎县| 共和县| 新营市| 奇台县| 西安市| 永川市| 邓州市| 锦州市| 深水埗区| 黄平县| 贞丰县| 武陟县| 柳林县| 绥阳县| 大冶市| 微博| 万荣县| 深泽县| 黎川县| 浠水县| 开封市| 瑞昌市| 历史|