找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Xiankun Zhang,Jiayang Guo Conference proce

[復(fù)制鏈接]
樓主: CURD
31#
發(fā)表于 2025-3-26 21:48:47 | 只看該作者
Depth-NeuS: Neural Implicit Surfaces Learning for Multi-view Reconstruction Based on Depth Information optimization. Additionally, we integrate photometric loss and geometric loss into loss function as geometric consistency loss to achieve geometric constraints. Empirical experiments have showcased the superior performance of Depth-NeuS over existing technologies across various scenarios. Moreover
32#
發(fā)表于 2025-3-27 03:16:00 | 只看該作者
33#
發(fā)表于 2025-3-27 06:31:41 | 只看該作者
Boosting Robustness of Silhouette-Based Gait Recognition Against Adversarial Attacksnhance edge information in images. The objective is to compel deep neural networks to focus more on semantic information in gait silhouette images and reduce feature deviations induced by adversarial perturbations. The method can significantly improve the adversarial robustness of silhouette-based g
34#
發(fā)表于 2025-3-27 11:56:53 | 只看該作者
35#
發(fā)表于 2025-3-27 15:16:49 | 只看該作者
36#
發(fā)表于 2025-3-27 18:49:44 | 只看該作者
Sparse Discriminant Graph Embedding for Feature Extractiongonal constraint and a sparse constraint simultaneously, ensuring the preservation of key information from the original data while enhancing robustness against noise. Extensive experiments on four real-world databases demonstrate the competitiveness of SDGE against state-of-the-art feature extractio
37#
發(fā)表于 2025-3-27 22:31:43 | 只看該作者
A Multi-Scale Additive Enhanced Network for Remote Sensing Scene Classificationting the problem of high inter class similarity. A Multi-Scale Additive Enhanced Network (MSAENet) is proposed based on MSAE Block and Bridging Residual Module (BRM) and is validated on two datasets, WHU-SIRI and AID. Based on experimental data, the classification accuracy of MSAENet is better than
38#
發(fā)表于 2025-3-28 02:12:54 | 只看該作者
SeWi: A Framework Enhancing CSI-Based Human Activity Recognitionifferent models as the basic models for SeWi. We also analyze the effective range of hyperparameters for this segmentation method. The results indicate that SeWi exhibits varying degrees of improvement for different models. Of particular note, using ResNet18 as the basic model for SeWi, the accuracy
39#
發(fā)表于 2025-3-28 09:55:54 | 只看該作者
40#
發(fā)表于 2025-3-28 12:42:51 | 只看該作者
Research on Hidden Mind-Wandering Detection Algorithm for Online Classroom Based on Temporal Analysiorithm can quickly and effectively detect students’ distraction phenomena, including daydreaming, distraction, and hidden activities like using mobile phones in blind spots of the camera’s visual capture. This research is significant for helping teachers evaluate students’ performance in online clas
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南京市| 道真| 文昌市| 沂水县| 恩平市| 周宁县| 宣恩县| 虹口区| 霸州市| 惠水县| 荔浦县| 新营市| 合肥市| 桑植县| 武山县| 慈溪市| 民权县| 剑河县| 安西县| 浑源县| 抚松县| 井冈山市| 钟山县| 广水市| 平邑县| 昆山市| 新巴尔虎右旗| 贞丰县| 仁怀市| 南雄市| 上杭县| 河西区| 盐亭县| 仪征市| 海兴县| 龙游县| 襄垣县| 泰和县| 城市| 卫辉市| 澎湖县|