找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Xiankun Zhang,Qinhu Zhang Conference proce

[復(fù)制鏈接]
樓主: Lampoon
31#
發(fā)表于 2025-3-26 21:59:42 | 只看該作者
32#
發(fā)表于 2025-3-27 04:24:55 | 只看該作者
33#
發(fā)表于 2025-3-27 06:48:07 | 只看該作者
Heutiger Stand der Totalprothesen der Hüfteh (BAS) algorithm. The experimental result shows that the average recognition accuracy of the method are 95.8% and 96.7% on CWRU and IMS datasets, which proves that our model can effectively extract the fault features and determine the rolling bearing fault types more accurately.
34#
發(fā)表于 2025-3-27 10:08:09 | 只看該作者
35#
發(fā)表于 2025-3-27 14:46:13 | 只看該作者
Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRLtructures, and scaling-up doesn‘t always mirror potential. Additionally, limitations of LLMs are observed in C-arguments, etc. Lastly, we are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
36#
發(fā)表于 2025-3-27 17:56:33 | 只看該作者
37#
發(fā)表于 2025-3-27 23:25:21 | 只看該作者
IBAS-SVM Rolling Bearing Fault Diagnosis Method Based on Empirical Modal Characteristicsh (BAS) algorithm. The experimental result shows that the average recognition accuracy of the method are 95.8% and 96.7% on CWRU and IMS datasets, which proves that our model can effectively extract the fault features and determine the rolling bearing fault types more accurately.
38#
發(fā)表于 2025-3-28 04:48:17 | 只看該作者
39#
發(fā)表于 2025-3-28 07:56:31 | 只看該作者
40#
發(fā)表于 2025-3-28 11:06:50 | 只看該作者
A Dynamic Collaborative Recommendation Method Based on Multimodal Fusiony capture in recommendation systems. To address this, we propose MBTRec, a multimodal recommendation model based on the Transformer encoder. It employs an innovative bidirectional tower-type attention mechanism (Bi Towernet) for modal fusion, ensuring the independent contribution of each modality wh
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固阳县| 庆元县| 双城市| 耿马| 武宣县| 荣昌县| 新乡市| 获嘉县| 科技| 瓮安县| 卓尼县| 子长县| 镇原县| 理塘县| 洛阳市| 阿巴嘎旗| 浮梁县| 吉隆县| 麻城市| 东至县| 海兴县| 浏阳市| 德保县| 灵宝市| 尚志市| 贵州省| 罗定市| 临汾市| 徐闻县| 兴化市| 壤塘县| 无锡市| 钟山县| 丁青县| 松原市| 荆州市| 黄梅县| 舞钢市| 高安市| 青田县| 开鲁县|