找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Xiankun Zhang,Qinhu Zhang Conference proce

[復(fù)制鏈接]
樓主: Lampoon
31#
發(fā)表于 2025-3-26 21:59:42 | 只看該作者
32#
發(fā)表于 2025-3-27 04:24:55 | 只看該作者
33#
發(fā)表于 2025-3-27 06:48:07 | 只看該作者
Heutiger Stand der Totalprothesen der Hüfteh (BAS) algorithm. The experimental result shows that the average recognition accuracy of the method are 95.8% and 96.7% on CWRU and IMS datasets, which proves that our model can effectively extract the fault features and determine the rolling bearing fault types more accurately.
34#
發(fā)表于 2025-3-27 10:08:09 | 只看該作者
35#
發(fā)表于 2025-3-27 14:46:13 | 只看該作者
Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRLtructures, and scaling-up doesn‘t always mirror potential. Additionally, limitations of LLMs are observed in C-arguments, etc. Lastly, we are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
36#
發(fā)表于 2025-3-27 17:56:33 | 只看該作者
37#
發(fā)表于 2025-3-27 23:25:21 | 只看該作者
IBAS-SVM Rolling Bearing Fault Diagnosis Method Based on Empirical Modal Characteristicsh (BAS) algorithm. The experimental result shows that the average recognition accuracy of the method are 95.8% and 96.7% on CWRU and IMS datasets, which proves that our model can effectively extract the fault features and determine the rolling bearing fault types more accurately.
38#
發(fā)表于 2025-3-28 04:48:17 | 只看該作者
39#
發(fā)表于 2025-3-28 07:56:31 | 只看該作者
40#
發(fā)表于 2025-3-28 11:06:50 | 只看該作者
A Dynamic Collaborative Recommendation Method Based on Multimodal Fusiony capture in recommendation systems. To address this, we propose MBTRec, a multimodal recommendation model based on the Transformer encoder. It employs an innovative bidirectional tower-type attention mechanism (Bi Towernet) for modal fusion, ensuring the independent contribution of each modality wh
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大竹县| 建阳市| 凯里市| 县级市| 桦南县| 石景山区| 同心县| 泽州县| 扬中市| 吉木萨尔县| 玛纳斯县| 界首市| 玉山县| 德化县| 昌平区| 香格里拉县| 通化县| 西乡县| 衡东县| 赤峰市| 九龙县| 武邑县| 梧州市| 平阳县| 吴堡县| 麦盖提县| 桦川县| 巨野县| 华亭县| 涪陵区| 永宁县| 全椒县| 饶平县| 安西县| 淳化县| 玛纳斯县| 丹寨县| 西吉县| 铜梁县| 博兴县| 休宁县|