找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abstract Algebra; Suitable for Self-St Marco Hien Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
樓主: 補給線
41#
發(fā)表于 2025-3-28 16:30:14 | 只看該作者
Einheiten des Strahlenschutzes,In this chapter, we examine which finite fields exist and how they are related to each other. The answer to the latter question will be provided by Galois theory.
42#
發(fā)表于 2025-3-28 21:38:12 | 只看該作者
Kernenergie und Kernkraftwerke,We prove, as an application of Galois theory, that there are polynomial equations . over . of order . whose solutions cannot be solved by radicals. Considering the general equation, one can analogously see that there can be no solution formula for polynomial equations of degree 5 or higher.
43#
發(fā)表于 2025-3-29 01:02:06 | 只看該作者
44#
發(fā)表于 2025-3-29 03:30:30 | 只看該作者
Field Extensions and Algebraic Elements,Starting with a base field . and a polynomial equation with coefficients in ., one is naturally lead to involve a larger field . that contains the solutions. This leads to the concept of a field extension . | .. We investigate properties of those, which we mostly obtain from Linear Algebra.
45#
發(fā)表于 2025-3-29 07:52:48 | 只看該作者
46#
發(fā)表于 2025-3-29 13:15:30 | 只看該作者
47#
發(fā)表于 2025-3-29 18:56:21 | 只看該作者
Unique Factorization Domains,An important tool in arithmetic inside the integers . is the unique prime factorization. We will take a closer look at this kind of property for rings—again not all rings will have this property.
48#
發(fā)表于 2025-3-29 22:05:11 | 只看該作者
49#
發(fā)表于 2025-3-30 00:07:04 | 只看該作者
50#
發(fā)表于 2025-3-30 07:04:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴马| 青铜峡市| 汕尾市| 湖口县| 汝城县| 孝义市| 化德县| 开鲁县| 囊谦县| 曲阜市| 新建县| 额济纳旗| 芮城县| 大化| 永川市| 金川县| 盖州市| 金坛市| 彭水| 新密市| 依兰县| 秦安县| 寿光市| 库车县| 微山县| 松滋市| 积石山| 鄂州市| 宁海县| 曲周县| 原平市| 翼城县| 佳木斯市| 小金县| 荔波县| 涞源县| 怀远县| 盈江县| 尼勒克县| 郯城县| 平塘县|