找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abstract Algebra; Suitable for Self-St Marco Hien Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
樓主: 補給線
41#
發(fā)表于 2025-3-28 16:30:14 | 只看該作者
Einheiten des Strahlenschutzes,In this chapter, we examine which finite fields exist and how they are related to each other. The answer to the latter question will be provided by Galois theory.
42#
發(fā)表于 2025-3-28 21:38:12 | 只看該作者
Kernenergie und Kernkraftwerke,We prove, as an application of Galois theory, that there are polynomial equations . over . of order . whose solutions cannot be solved by radicals. Considering the general equation, one can analogously see that there can be no solution formula for polynomial equations of degree 5 or higher.
43#
發(fā)表于 2025-3-29 01:02:06 | 只看該作者
44#
發(fā)表于 2025-3-29 03:30:30 | 只看該作者
Field Extensions and Algebraic Elements,Starting with a base field . and a polynomial equation with coefficients in ., one is naturally lead to involve a larger field . that contains the solutions. This leads to the concept of a field extension . | .. We investigate properties of those, which we mostly obtain from Linear Algebra.
45#
發(fā)表于 2025-3-29 07:52:48 | 只看該作者
46#
發(fā)表于 2025-3-29 13:15:30 | 只看該作者
47#
發(fā)表于 2025-3-29 18:56:21 | 只看該作者
Unique Factorization Domains,An important tool in arithmetic inside the integers . is the unique prime factorization. We will take a closer look at this kind of property for rings—again not all rings will have this property.
48#
發(fā)表于 2025-3-29 22:05:11 | 只看該作者
49#
發(fā)表于 2025-3-30 00:07:04 | 只看該作者
50#
發(fā)表于 2025-3-30 07:04:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔江区| 太仆寺旗| 咸宁市| 陕西省| 临夏市| 万源市| 北宁市| 龙泉市| 夏津县| 罗江县| 漯河市| 高安市| 永寿县| 云安县| 澄迈县| 布拖县| 杭州市| 武乡县| 财经| 高陵县| 鸡东县| 班玛县| 定陶县| 扎赉特旗| 蒲江县| 南康市| 镇坪县| 从化市| 延吉市| 富民县| 无极县| 徐闻县| 普兰县| 交口县| 涡阳县| 夏津县| 武陟县| 清远市| 玉山县| 登封市| 铁力市|