找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: AI for Health Equity and Fairness; Leveraging AI to Add Arash Shaban-Nejad,Martin Michalowski,Simone Bianc Book 2024 The Editor(s) (if appl

[復(fù)制鏈接]
查看: 28064|回復(fù): 65
樓主
發(fā)表于 2025-3-21 18:30:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱AI for Health Equity and Fairness
期刊簡稱Leveraging AI to Add
影響因子2023Arash Shaban-Nejad,Martin Michalowski,Simone Bianc
視頻videohttp://file.papertrans.cn/168/167092/167092.mp4
發(fā)行地址Highlights the latest achievements in the use of AI in improving healthy equity.Includes revised versions of selected papers presented at the 2024 AAAI Workshop on Health Intelligence.Interconnects th
學(xué)科分類Studies in Computational Intelligence
圖書封面Titlebook: AI for Health Equity and Fairness; Leveraging AI to Add Arash Shaban-Nejad,Martin Michalowski,Simone Bianc Book 2024 The Editor(s) (if appl
影響因子.This book aims to highlight the latest achievements in the use of AI for improving Health Equity and Fairness. The edited volume contains selected papers presented at the 2024 Health Intelligence workshop, co-located with the Thirty-Eight Association for the Advancement of Artificial Intelligence (AAAI) conference, and presents an overview of the issues, challenges, and potentials in the field, along with new research results. This book provides information for researchers, students, industry professionals, clinicians, and public health agencies interested in the applications of AI in medicine and public health..
Pindex Book 2024
The information of publication is updating

書目名稱AI for Health Equity and Fairness影響因子(影響力)




書目名稱AI for Health Equity and Fairness影響因子(影響力)學(xué)科排名




書目名稱AI for Health Equity and Fairness網(wǎng)絡(luò)公開度




書目名稱AI for Health Equity and Fairness網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱AI for Health Equity and Fairness被引頻次




書目名稱AI for Health Equity and Fairness被引頻次學(xué)科排名




書目名稱AI for Health Equity and Fairness年度引用




書目名稱AI for Health Equity and Fairness年度引用學(xué)科排名




書目名稱AI for Health Equity and Fairness讀者反饋




書目名稱AI for Health Equity and Fairness讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:14:41 | 只看該作者
Towards Personalised Patient Risk Prediction Using Temporal Hospital Data Trajectories, Warning Scores (EWS) are widely deployed to measure overall health status, and risk of adverse outcomes, in hospital patients. However, current EWS are limited both by their lack of personalisation and use of static observations. We propose a pipeline that groups intensive care unit patients by the
板凳
發(fā)表于 2025-3-22 02:01:21 | 只看該作者
地板
發(fā)表于 2025-3-22 06:09:57 | 只看該作者
5#
發(fā)表于 2025-3-22 10:19:39 | 只看該作者
,Generation of?Clinical Skin Images with?Pathology with?Scarce Data,ovided to healthcare providers and doctors. Dermatology is among the areas which can benefit from data-driven models, as the first step of identifying skin diseases typically consists of visual inspection (possibly followed by further analyses) and AI approaches are well-suited to classify images—if
6#
發(fā)表于 2025-3-22 16:45:56 | 只看該作者
,MILFORMER: Weighted Dual Stream Class Centered Random Attention Multiple Instance Learning for?Wholmerged as a pivotal strategy to address the scarcity of localized annotations in WSI analysis. However, in the current landscape of state-of-the-art methods, the instance-level accuracy of these models significantly lags behind that of the bag-level. This article introduces MILFormer, a novel multi-
7#
發(fā)表于 2025-3-22 19:30:58 | 只看該作者
8#
發(fā)表于 2025-3-22 22:28:28 | 只看該作者
9#
發(fā)表于 2025-3-23 03:49:10 | 只看該作者
10#
發(fā)表于 2025-3-23 08:34:49 | 只看該作者
,DOST—Domain Obedient Self-supervision for?Trustworthy Multi Label Classification with?Noisy Labels,ystems. Deep learning systems rely on enormous amounts of data, often accompanied by annotation errors, and do not natively abide by well-known medical principles. In diagnostic scenarios, lack of adherence to domain constraints make systems unreliable, and this problem is only exacerbated by annota
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵璧县| 安顺市| 临城县| 克什克腾旗| 石河子市| 长汀县| 江城| 民丰县| 镇平县| 吉林省| 克拉玛依市| 马山县| 红原县| 新闻| 安福县| 博客| 徐州市| 乐业县| 屏东县| 微山县| 沾益县| 沙河市| 平湖市| 玉溪市| 乌鲁木齐市| 乌审旗| 辉南县| 临邑县| 东方市| 汽车| 锦屏县| 杂多县| 灵丘县| 泰兴市| 新郑市| 南丰县| 孝昌县| 修武县| 仁布县| 华池县| 拉孜县|