找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: AI for Brain Lesion Detection and Trauma Video Action Recognition; First BONBID-HIE Les Rina Bao,Ellen Grant,Yangming Ou Conference proceed

[復(fù)制鏈接]
查看: 23856|回復(fù): 43
樓主
發(fā)表于 2025-3-21 19:21:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱AI for Brain Lesion Detection and Trauma Video Action Recognition
期刊簡(jiǎn)稱First BONBID-HIE Les
影響因子2023Rina Bao,Ellen Grant,Yangming Ou
視頻videohttp://file.papertrans.cn/168/167091/167091.mp4
學(xué)科分類(lèi)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: AI for Brain Lesion Detection and Trauma Video Action Recognition; First BONBID-HIE Les Rina Bao,Ellen Grant,Yangming Ou Conference proceed
影響因子.This book constitutes the proceedings of the?First BONBID-HIE Lesion Segmentation Challenge and the First Trauma Thompson Challenge, held in conjunction with MICCAI 2023, in Vancouver, BC, Canada, during October 2023.?..For BONBID-HIE 2023 Challenge 6 papers have been accepted out of 14 submissions. They span a broad array of?approaches leveraging anatomical information about HIE, data augmentation,?training strategies, model architecture, and integration with traditional machine?learning methods. For the?TTC 2023 Trauma Thompson Challenge 4 accepted contributions are included in this book. They deal with?advancements in machine?learning methods and their practical applications in addressing small and diffuse lesions in HIE segmentation.?.
Pindex Conference proceedings 2025
The information of publication is updating

書(shū)目名稱AI for Brain Lesion Detection and Trauma Video Action Recognition影響因子(影響力)




書(shū)目名稱AI for Brain Lesion Detection and Trauma Video Action Recognition影響因子(影響力)學(xué)科排名




書(shū)目名稱AI for Brain Lesion Detection and Trauma Video Action Recognition網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱AI for Brain Lesion Detection and Trauma Video Action Recognition網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱AI for Brain Lesion Detection and Trauma Video Action Recognition被引頻次




書(shū)目名稱AI for Brain Lesion Detection and Trauma Video Action Recognition被引頻次學(xué)科排名




書(shū)目名稱AI for Brain Lesion Detection and Trauma Video Action Recognition年度引用




書(shū)目名稱AI for Brain Lesion Detection and Trauma Video Action Recognition年度引用學(xué)科排名




書(shū)目名稱AI for Brain Lesion Detection and Trauma Video Action Recognition讀者反饋




書(shū)目名稱AI for Brain Lesion Detection and Trauma Video Action Recognition讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:01:17 | 只看該作者
Objekt, Ereignis, Ereignisprozedur,ate prediction of both the verb and noun components of the action, given that actions consist of both a verb and a noun. In the end, we selected the predictions generated by Video-Swin as our final submission, achieving a Top-1 Action accuracy of . for Action Recognition and Top-1 Action accuracy of
板凳
發(fā)表于 2025-3-22 02:41:13 | 只看該作者
地板
發(fā)表于 2025-3-22 07:10:22 | 只看該作者
Overview of?the?Trauma THOMPSON Challenge at?MICCAI 2023chieved a Top 1 accuracy of 35.27%. For Task 2, the best method using VideoSwin with Swin-S and CenterCrop achieved Top 1 accuracy of 23.67%. No submission was received for Task 3. For the VQA task, the best method relying on MCAN-large with VinVL and FQCA obtained an accuracy of 74.35%.
5#
發(fā)表于 2025-3-22 11:21:57 | 只看該作者
Action Recognition and?Action Anticipation Tasks in?the?Trauma THOMPSON Challenge Technical Reportate prediction of both the verb and noun components of the action, given that actions consist of both a verb and a noun. In the end, we selected the predictions generated by Video-Swin as our final submission, achieving a Top-1 Action accuracy of . for Action Recognition and Top-1 Action accuracy of
6#
發(fā)表于 2025-3-22 14:55:36 | 只看該作者
7#
發(fā)表于 2025-3-22 17:15:41 | 只看該作者
8#
發(fā)表于 2025-3-22 21:39:17 | 只看該作者
,Nichtnumerische Speicherpl?tze,rucial for diagnosis and treatment. However, traditional deep learning models often struggle with HIE’s diverse lesion characteristics. This paper presents a novel ensemble strategy utilizing Swin-UNETR, a transformer-based model, to address this challenge. We demonstrate the advantages of Swin-UNET
9#
發(fā)表于 2025-3-23 02:17:33 | 只看該作者
10#
發(fā)表于 2025-3-23 06:45:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望都县| 大埔县| 镇坪县| 平果县| 雷波县| 舞阳县| 平和县| 漾濞| 惠东县| 若羌县| 林州市| 忻城县| 科技| 论坛| 寻乌县| 东阳市| 邵东县| 荆州市| 阜南县| 达拉特旗| 阜城县| 武汉市| 鸡西市| 贵德县| 镇沅| 金塔县| 双牌县| 涿鹿县| 增城市| 满城县| 新丰县| 融水| 武城县| 阿勒泰市| 岳阳县| 绥阳县| 托克托县| 株洲市| 梓潼县| 中卫市| 武功县|