找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: A Tutorial on the WKB Approximation for Innovative Dirac Materials; Graphene and Beyond Andrii Iurov Book 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:30:05 | 只看該作者
22#
發(fā)表于 2025-3-25 10:42:17 | 只看該作者
Geometrische Funktionentheorie,cessfully employed in cutting-edge research problems, which will be addressed in detail in this chapter. Developing, formulating, and applying novel approximation methods, including the WKB, for new quantum systems remains one of the most actively explored directions in theoretical physics that will never lose its importance.
23#
發(fā)表于 2025-3-25 11:53:45 | 只看該作者
24#
發(fā)表于 2025-3-25 18:21:33 | 只看該作者
25#
發(fā)表于 2025-3-25 22:40:21 | 只看該作者
26#
發(fā)表于 2025-3-26 02:42:08 | 只看該作者
Einsatz von Workflow-Management-Systemen,ron tunneling remains one of the central research subjects in all Dirac materials mainly because of the so-called .:a complete electron transmission through a square barrier or a step for the direct incidence. We will also apply the WKB method to investigating the electron tunneling for nonuniform potentials, . , and the tunneling in . .
27#
發(fā)表于 2025-3-26 06:07:56 | 只看該作者
28#
發(fā)表于 2025-3-26 10:37:40 | 只看該作者
Introduction and Overview (2): Approximations and Calculation Techniques in Quantum Theory,cessfully employed in cutting-edge research problems, which will be addressed in detail in this chapter. Developing, formulating, and applying novel approximation methods, including the WKB, for new quantum systems remains one of the most actively explored directions in theoretical physics that will never lose its importance.
29#
發(fā)表于 2025-3-26 15:37:44 | 只看該作者
Dirac Cone Materials: Graphene and Beyond Graphene, and Kagome lattices, whose low-energy spectrum exhibits a purely flat or dispersionless band in addition to a regular Dirac cone. A finite-gap . model will be also addressed. Importantly, . also represents a rare class of materials in which the Berry phase enters their Hamiltonian directly.
30#
發(fā)表于 2025-3-26 18:37:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金溪县| 吉林市| 宁武县| 若羌县| 翼城县| 桐梓县| 象州县| 基隆市| 宁乡县| 晴隆县| 雷山县| 丰都县| 阳谷县| 蕉岭县| 原阳县| 宾阳县| 永和县| 罗江县| 浦城县| 鲁山县| 宽城| 贵州省| 蒙自县| 佛山市| 漳浦县| 衡水市| 沙坪坝区| 永仁县| 临邑县| 乐山市| 临漳县| 平阴县| 循化| 阳江市| 屏山县| 景谷| 石狮市| 玉树县| 林西县| 阿荣旗| 叶城县|