找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Tutorial on the WKB Approximation for Innovative Dirac Materials; Graphene and Beyond Andrii Iurov Book 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:30:05 | 只看該作者
22#
發(fā)表于 2025-3-25 10:42:17 | 只看該作者
Geometrische Funktionentheorie,cessfully employed in cutting-edge research problems, which will be addressed in detail in this chapter. Developing, formulating, and applying novel approximation methods, including the WKB, for new quantum systems remains one of the most actively explored directions in theoretical physics that will never lose its importance.
23#
發(fā)表于 2025-3-25 11:53:45 | 只看該作者
24#
發(fā)表于 2025-3-25 18:21:33 | 只看該作者
25#
發(fā)表于 2025-3-25 22:40:21 | 只看該作者
26#
發(fā)表于 2025-3-26 02:42:08 | 只看該作者
Einsatz von Workflow-Management-Systemen,ron tunneling remains one of the central research subjects in all Dirac materials mainly because of the so-called .:a complete electron transmission through a square barrier or a step for the direct incidence. We will also apply the WKB method to investigating the electron tunneling for nonuniform potentials, . , and the tunneling in . .
27#
發(fā)表于 2025-3-26 06:07:56 | 只看該作者
28#
發(fā)表于 2025-3-26 10:37:40 | 只看該作者
Introduction and Overview (2): Approximations and Calculation Techniques in Quantum Theory,cessfully employed in cutting-edge research problems, which will be addressed in detail in this chapter. Developing, formulating, and applying novel approximation methods, including the WKB, for new quantum systems remains one of the most actively explored directions in theoretical physics that will never lose its importance.
29#
發(fā)表于 2025-3-26 15:37:44 | 只看該作者
Dirac Cone Materials: Graphene and Beyond Graphene, and Kagome lattices, whose low-energy spectrum exhibits a purely flat or dispersionless band in addition to a regular Dirac cone. A finite-gap . model will be also addressed. Importantly, . also represents a rare class of materials in which the Berry phase enters their Hamiltonian directly.
30#
發(fā)表于 2025-3-26 18:37:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
谷城县| 阿鲁科尔沁旗| 梁山县| 彝良县| 方城县| 和田市| 乡城县| 双城市| 梅州市| 靖远县| 额尔古纳市| 东平县| 通化市| 佛坪县| 宜州市| 江山市| 汉沽区| 南部县| 绥芬河市| 阿尔山市| 广南县| 栾川县| 体育| 射洪县| 翁源县| 蛟河市| 若尔盖县| 河间市| 三穗县| 正镶白旗| 霍林郭勒市| 新田县| 察哈| 仙游县| 肇庆市| 旺苍县| 双峰县| 桐柏县| 十堰市| 社旗县| 原平市|