找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Averaging Methods in Nonlinear Dynamical Systems; Jan A. Sanders,Ferdinand Verhulst,James Murdock Book 2007Latest edition Springer-Verlag

[復(fù)制鏈接]
樓主: 不讓做的事
31#
發(fā)表于 2025-3-26 22:41:01 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:54 | 只看該作者
Invariant Manifolds by Averaging,ms, a basic approach is to locate and to characterize the classical ingredients of such systems. These ingredients are critical points (equilibrium solutions), periodic solutions, invariant manifolds (in particular quasiperiodic tori), homoclinics, heteroclinics, and in general stable and unstable manifolds of special solutions.
33#
發(fā)表于 2025-3-27 08:34:07 | 只看該作者
34#
發(fā)表于 2025-3-27 13:03:16 | 只看該作者
Applied Mathematical Scienceshttp://image.papertrans.cn/b/image/166957.jpg
35#
發(fā)表于 2025-3-27 15:01:04 | 只看該作者
Averaging Methods in Nonlinear Dynamical Systems978-0-387-48918-6Series ISSN 0066-5452 Series E-ISSN 2196-968X
36#
發(fā)表于 2025-3-27 20:17:18 | 只看該作者
https://doi.org/10.1007/978-3-642-94414-7eeping” of averaging calculations, averaging systems containing “slow time”, ways to remove the nonuniqueness of the averaging transformation, and the relationship between averaging and the method of multiple scales.
37#
發(fā)表于 2025-3-27 22:18:07 | 只看該作者
https://doi.org/10.1007/978-3-642-48555-8ms, a basic approach is to locate and to characterize the classical ingredients of such systems. These ingredients are critical points (equilibrium solutions), periodic solutions, invariant manifolds (in particular quasiperiodic tori), homoclinics, heteroclinics, and in general stable and unstable manifolds of special solutions.
38#
發(fā)表于 2025-3-28 05:09:50 | 只看該作者
https://doi.org/10.1007/978-0-387-48918-6Dynamical; Methods; Nonlinear; Systems; bifurcation; differential equation; partial differential equation;
39#
發(fā)表于 2025-3-28 09:23:57 | 只看該作者
978-1-4419-2376-9Springer-Verlag New York 2007
40#
發(fā)表于 2025-3-28 10:38:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 16:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南平市| 博白县| 安泽县| 建水县| 玉门市| 潜江市| 交口县| 梅河口市| 铁力市| 新兴县| 邢台县| 永福县| 西畴县| 准格尔旗| 台南市| 巴塘县| 铁岭市| 彭山县| 盖州市| 樟树市| 康乐县| 济源市| 临沧市| 佛学| 平泉县| 许昌市| 盐亭县| 日土县| 万荣县| 湖口县| 阳西县| 五河县| 万安县| 虞城县| 磐石市| 健康| 阜新| 金平| 同仁县| 靖边县| 鄂温|