找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Autonomous Agents and Multiagent Systems. Best and Visionary Papers; AAMAS 2022 Workshops Francisco S. Melo,Fei Fang Conference proceedings

[復制鏈接]
樓主: ergonomics
31#
發(fā)表于 2025-3-27 00:25:26 | 只看該作者
32#
發(fā)表于 2025-3-27 04:50:28 | 只看該作者
33#
發(fā)表于 2025-3-27 08:31:33 | 只看該作者
Enabling Negotiating Agents to?Explore Very Large Outcome Spacesgents from the Automated Negotiating Agents Competition. Furthermore, we validate one of our techniques by integrating it into negotiation platform GeniusWeb, to enable existing state-of-the-art agents (and future agents) to scale their use to very large outcome spaces.
34#
發(fā)表于 2025-3-27 10:38:31 | 只看該作者
35#
發(fā)表于 2025-3-27 14:28:44 | 只看該作者
Only Those Who Can Obey Can Disobey: The Intentional Implications of?Artificial Agent Disobedience First, we attempt to disentangle figurative uses of the term “disobedience” from those connotative of deeper senses of agency. We then situate . disobedience as being committed by an agent through an action that presupposes some understanding of the violated instruction or command.
36#
發(fā)表于 2025-3-27 19:42:03 | 只看該作者
37#
發(fā)表于 2025-3-27 21:56:51 | 只看該作者
38#
發(fā)表于 2025-3-28 02:09:01 | 只看該作者
School’s Out? Simulating Schooling Strategies During COVID-19n a population-level scale. To examine the impact of different schooling strategies, an agent-based model is used in the context of the COVID-19 pandemic using a German city as an example. The simulation experiments show that reducing the class size by rotating weekly between in-person classes and o
39#
發(fā)表于 2025-3-28 08:24:01 | 只看該作者
Data-Driven Agent-Based Model Development to Support Human-Centric Transit-Oriented DesignTOD) designs and infrastructure investment proposals prepared by urban planners. The students test the model as model users, and the generated model output on the use of the city infrastructure, occupancy of public space, and key data around the pedestrian and vehicle movements can be translated to
40#
發(fā)表于 2025-3-28 11:45:31 | 只看該作者
Enabling Negotiating Agents to?Explore Very Large Outcome SpacesDS provides a balance between being rapid, accurate, diverse, and scalable search, allowing agents to search spaces with as many as . possible outcomes on very run-of-the-mill hardware. We show that our algorithm can be used to respond to the three most common search queries employed by 87% of all a
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-27 09:23
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
昌都县| 新安县| 临沧市| 宁河县| 大连市| 普定县| 长沙市| 屏东县| 宁陕县| 永川市| 新余市| 曲周县| 伊通| 肇庆市| 建始县| 绿春县| 资溪县| 团风县| 肃南| 黄大仙区| 长丰县| 双鸭山市| 安新县| 牡丹江市| 淮北市| 黎城县| 宜丰县| 上饶市| 青田县| 当阳市| 阿合奇县| 庄浪县| 高阳县| 岱山县| 会理县| 明星| 牟定县| 方正县| 民乐县| 龙海市| 错那县|